Студопедия — 3 страница. ☺ Формула следует непосредственно из формулы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

3 страница. ☺ Формула следует непосредственно из формулы






.

☺ Формула следует непосредственно из формулы . ☻

17. Непрерывная случайная величина (НОВ). Вероятность отдельно взятого значения НСВ. Математическое ожидание и дис­персия нсв.

Определение. Случайная величина Х называется непрерывной, если ее функция распределения непрерывна в любой точке и дифференцируема всюду, кроме, быть может, отдельных точек (точки излома).

На рис. 3.7 показана Функция распределения непрерывной случайной величины Х, дифференцируемая во всех точках, кроме трех точек излома.

Теорема. Вероятность любого отдельно взятого значения непрерывной случайной величины равна нулю.

☺ Покажем, что для любого значения случайной величины Х вероятность . Представим в виде .

Применяя свойство функции распределения случайной величины Х и учитывая непрерывность F(x), получим:

. ☻

Из приведенной выше теоремы следует, что нулевой вероятностью могут обладать и возможные события, так как событие, состоящее в том, что случайная величина Х приняла конкретное значение , является возможным.

Следствие. Если Х - непрерывная случайная величина, то вероятность попадания случайной величины в интервал не зависит от того, является этот интервал открытым или закрытым, т.е.

.

Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку [a,b], называется определенный интеграл . Если возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле: . При этом предполагается, что интеграл абсолютно сходится.

Дисперсией непрерывной случайной величины называется математическое ожидание квадрата ее отклонения. .

По аналогии с дисперсией дискретной случайной величины, для практического вычисления дисперсии используется формула: .

18. Плотность вероятности непрерывной случайной величины, ее определение, свойства и график.

Определение. Плотностью вероятности (плотностью распределения или просто плотностью) непрерывной случайной величины Х называется производная ее функции распределения

Про случайную величину Х говорят, что она имеет распределение (распределена) с плотностью на определенном участке оси абсцисс. Плотность вероятности , как и функция распределения F(x), является одной из форм закона распределения, но в отличие от функции распределения она существует только для непрерывныхслучайных величин. Плотность вероятности иногда называют дифференциальной функцией или дифференциальным законом распределения. График плотности вероятности называется кривой распределения.

Свойства плотности вероятности непрерывной случайной величины.

1. Плотность вероятности - неотрицательная функция, т.е. .

как производная монотонно неубывающей функции F(х). ☻

2. Вероятность попадания непрерывной случайной величины в интервал [а,b] равна определенному интегралу от ее плотности вероятности в пределах от а до b, т.е. .

☺ Согласно свойству 4 функции распределения . Так как F(x) - первообразная для плотности вероятности (т.к. , то по формуле Ньютона-Лейбница приращение первообразной на отрезке [а,b] – определенный интеграл . ☻

Геометрически полученная вероятность равна площади фигуры, ограниченной сверху кривой распределения и опирающейся на отрезок [а,b] (рис. 3.8).

3. Функция распределения непрерывной случайной величины может быть выражена через плотность вероятности по формуле:

.

Геометрически функция распределения равна площади фигуры, ограниченной сверху кривой распределения и лежащей левее точки х (рис. 3.9).

4. Несобственный интеграл в бесконечных пределах от плотности вероятности непрерывной случайной величины равен единице: .

Геометрически свойства 1 и 4 плотности вероятности означают, что ее график - кривая распределения - лежит не ниже оси абсцисс, и полная площадь фигуры, ограниченной кривой распределения и осью абсцисс, равна единице.

19. Случайная величина, распределенная по биномиальному закону, ее математическое ожидание и дисперсия. Закон распреде­ления Пуассона.

Определение. Дискретная случайная величина Х имеет биномиальный закон распределения с параметрами npq, если она принимает значения 0, 1, 2,..., m,...,n с вероятностями

,

где 0<р<l, q=1-p.

Как видим, вероятности Р(Х=m) находятся по формуле Бернулли, следовательно, биномиальный закон распределения представляет собой закон распределения числа Х=m наступлений события А в n независимых испытаниях, в каждом из которых оно может произойти с одной и той же вероятностью р.

Ряд распределения биномиального закона имеет вид:

Очевидно, что определение биномиального закона корректно, т.к. основное свойство ряда распределения выполнено, ибо есть не что иное, как сумма всех членов разложения бинома Ньютона:

Математическое ожидание случайной величины Х, распределенной по биноминальному закону,

а ее дисперсия

Определение. Дискретная случайная величина Х имеет закон распределения Пуассона с параметром λ > 0, если она принимает значения 0, 1, 2,..., m,... (бесконечное, но счетное множество значений) с вероятностями ,

Ряд распределения закона Пуассона имеет вид:

Очевидно, что определение закона Пуассона корректно, так как основное свойство ряда распределения выполнено, ибо сумма ряда .

На рис. 4.1 показан многоугольник (полигон) распределения случайной величины, распределенной по закону Пуассона Р(Х=m)=Рm(λ) с параметрами λ = 0,5, λ = 1, λ = 2, λ = 3,5.

Теорема. Математическое oжидaниe и дисперсия случайной величины, распределенной по закону Пуассона, совпадают и равны параметру λ этого закона, т.е.

и

20. Математическое ожидание и дисперсия числа и частости на­ступлений события в п повторных независимых испытаниях (с выводом).

Математическое ожидание частости события в n независимых испытаниях, в каждом из которых оно может наступить с одной и той же вероятностью р, равно р, т.е. а ее дисперсия .

 

□ Частость события есть , т.е. , где Х - случайная величина, распределенная по биномиальному закону. Поэтому

.

21. Определение нормального закона распределения. Теоретико-вероятностный смысл его параметров. Нормальная кривая и зависимость ее положения и формы от параметров.

Определение. Непрерывная случайная величина Х имеет нормальный закон распределения (закон Гаусса) с параметрами а и , если ее плотность вероятности имеет вид:

Термин «нормальный» не совсем удачный. Многие признаки подчиняются нормальному закону, например, рост человека, дальность полета снаряда и т.п. Но если какой-либо признак подчиняется другому, отличному от нормального, закону распределения, то это вовсе не говорит о «ненормальности» явления, связанного с этим признаком.

Кривую нормального закона распределения называют нормальной или гауссовой кривой. На рис. 4.5 а, б приведены нормальная кривая с параметрами а и , т.е. , и график функции распределения случайной величины Х, имеющей нормальный закон.

Обратим внимание на то, что нормальная кривая симметрична относительно прямой х=а, имеет максимум в точке х=а, равный , т.е. , и две точки перегиба с ординатой .

Можно заметить, что в выражении плотности нормального закона параметры обозначены буквами а и , которыми мы обозначаем математическое ожидание М(Х) и дисперсию D(Х). Такое совпадение неслучайно. Рассмотрим теорему, устанавливающую теоретико-вероятностный смысл параметров нормального закона.

Теорема. Математическое ожидание случайной величины Х, распределенной по нормальному закону, равно параметру а этого закона, т.е. , а ее дисперсия - параметру , т.е. .

Математическое ожидание случайной величины Х:

. Произведем замену переменной, положив . Тогда и , пределы интегрирования не меняются и, следовательно, .

(первый интеграл равен нулю как интеграл от нечетной функции по симметричному относительно начала координат промежутку, а второй интеграл - интеграл Эйлера­Пуассона).

Дисперсия случайной величины Х:

.

Сделаем ту же замену переменной , как и при вычислении предыдущего интеграла. Тогда

.

Применяя метод интегрирования по частям, получим:

.■

Выясним, как будет меняться нормальная кривая при изменении параметров а и (или ). Если , и меняется параметр а (), т.е. центр симметрии распределения, то нормальная кривая будет смещаться вдоль оси абсцисс, не меняя формы (рис. 4.6).

Если a=const и меняется параметр (или ), то меняется ордината максимума кривой . При увеличении ордината максимума кривой уменьшается, но так как площадь под любой кривой распределения должна оставаться равной единице, то кривая становится более плоской, растягиваясь вдоль оси абсцисс; при уменьшении а, напротив, нормальная кривая вытягивается вверх, одновременно сжимаясь с боков. На рис. 4.7 показаны нормальные кривые с параметрами , где . Т.о., параметр а (он же математическое ожидание) характеризует положение Центра, а параметр (он же дисперсия) - форму нормальной кривой.

Нормальный закон распределения случайной величины с параметрами а=0, =1, т.е. N(0;l), называется стандартным или нормированным, а соответствующая нормальная кривая - стандартной или нормированной.

22. Функция распределения нормально распределенной случай­ной величины и ее выражение через функцию Лапласа.

Сложность непосредственного нахождения функции распределения случайной величины, распределенной по нормальному закону, и вероятности ее попадания на некоторый промежуток связана с тем, что интеграл является «неберущимся». В элементарных функциях. Поэтому их выражают через функцию:

.

- функцию (интеграл вероятностей) Лапласа, для которой составлены таблицы. Геометрически функция Лапласа представляет собой площадь под стандартной нормальной кривой на отрезке [-х; х] (рис. 4.8).

Теорема. Функция распределения случайной величины Х, распределенной по нормальному закону, выражается через функцию Лапласа Ф(х) по формуле:

.

□ По формуле функция распределения: .

Сделаем замену переменной, полагая , , при , , поэтому

.

Первый интеграл

.

(В силу четности подынтегральной функции и того, что интеграл Эйлера-Пуассона равен ).

Второй интеграл с учетом составляет .

Итак, . ■

23. Формулы для определения вероятности: а) попадания нормально распределенной случайной величины в заданный интер­вал; б) ее отклонения от математического ожидания. Правило «трехсигм».

Свойства случайной величины, распределенной по нормальному закону:

1. Вероятность попадания случайной величины Х, распределенной по нормальному закону, в интервал , равна ,

Где , .

□ Учитывая, что вероятность есть приращение функции распределения на отрезке и учитывая формулу получим:

. ■

Вероятность того, что отклонение случайной величины Х, распределенной по нормальному закону, от математического ожидания а не превысит величину (по абсолютной величине), равна, где.

. Учитывая свойство 1, а также свойство нечетности функции Лапласа, получим

. ■

«правило трех сигм»:

Если случайная величина Х имеет нормальный закон распределения с параметрами а и , т.е. N(a; ), то практически достоверно, что ее значения заключены в интервале ().

Нарушение «правила трех сигм», т.е. отклонение нормально распределенной случайной величины Х больше, чем на (по абсолютной величине), является событием практически невозможным, так как его вероятность весьма мала:

.

24. Понятие двумерной (/7-мерной) случайной величины. При­меры. Таблица ее распределения. Одномерные распределения ее составляющих. Условные распределения и их нахождение по таб­лице распределения.

Очень часто результат испытания характеризуется не одной СВ, а некоторой системой случайных величин , которую называют также многомерной (n-мерной) случайной величиной или случайным вектором Х = (). Приведем примеры многомерных случайных величин.

1. Успеваемость выпускника вуза характеризуется системой n случайных величин - оценками по различным дисциплинам, проставленными в приложении к диплому.

2. Погода в данном месте в определенное время суток может быть охарактеризована системой случайных величин: - температура; - влажность; - давление; - скорость ветра и т.п.

Любая СВ (i = 1,2,...,n) есть функция элементарных событий ω, входящих в пространство элементарных событий Ω (). Поэтому и многомерная случайная величина есть функция элементарных событий ω:

т.е. каждому элементарному событию ω ставится в соответствие несколько действительных чисел , которые приняли случайные величины в результате испытания. В этом случае вектор х = () называется реализацией случайного вектора Х = ().

Случайные величины , входящие в систему, могут быть как дискретными (см. выше пример 1), так и непрерывными (пример 2).

Наиболее полным описанием многомерной СВ является закон ее распределения. При конечном множестве возможных значений многомерной СВ такой закон может быть задан в форме таблицы (матрицы), содержащей всевозможные сочетания значений каждой из одномерных случайных величин, входящих в систему, и соответствующие им вероятности. Так, если рассматривается двумерная дискретная случайная величина (X,Y), то ее двумерное распределение можно представить в виде таблицы (матрицы) распределения (табл. 5.1), в каждой клетке (i,j) которой располагаются вероятности произведения событий .

Так как события (i = 1,2,...,n; j = 1,2,...,m), состоящие в том, что СВ Х примет значение , а СВ Y - значение , несовместны и единственно возможны, т.е. образуют полную группу, то сумма их вероятностей равна единице, т.е.:

Распределение одномерной случайной величины Х можно получить, вычислив вероятность события (i = 1,2,...,n) как сумму вероятностей несовместных событий:

.

Аналогично .

Т.о., чтобы по таблице распределения (табл. 5.1) найти вероятность того, что одномерная случайная величина примет определенное значение, надо просуммировать вероятности из соответствующей этому значению строки (столбца) данной таблицы.

Если зафиксировать значение одного из аргументов, например, положить , то полученное распределение случайной СВ Х называется условным распределением Х при условии . Вероятности этого распределения будут условными вероятностями события , найденными в предположении, что событие произошло. Из определения условной вероятности:

.

Аналогично условное распределение СВ У при условии задается с помощью условных вероятностей: .

25. Ковариация и коэффициент корреляции случайных величин. Связь между екоррелированностью и независимостью случай­ных величин.

Пусть имеется двумерная СВ (Х,Y), распределение которой известно, т.е. известна табл. 5.1 или совместная плотность вероятности . Тогда можно найти математические ожидания М(Х) = ах, М(Y) = ау и дисперсии и одномерных составляющих Х и Y. Однако математические ожидания и дисперсии случайных величин Х и Y недостаточно полно характеризуют двумерную случайную величину (Х,Y), т.к. не выражают степени зависимости ее составляющих Х и Y эту роль выполняют ковариация и коэффициент корреляции.

Определение. Ковариацией (или корреляционным моментом) Кху случайных величин Х и Y называется математическое ожидание произведения отклонений этих величин от своих математических ожиданий, т.е.

, Или ,







Дата добавления: 2015-08-12; просмотров: 1845. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Значення творчості Г.Сковороди для розвитку української культури Важливий внесок в історію всієї духовної культури українського народу та її барокової літературно-філософської традиції зробив, зокрема, Григорій Савич Сковорода (1722—1794 pp...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

ПРОФЕССИОНАЛЬНОЕ САМОВОСПИТАНИЕ И САМООБРАЗОВАНИЕ ПЕДАГОГА Воспитывать сегодня подрастающее поколение на со­временном уровне требований общества нельзя без по­стоянного обновления и обогащения своего профессио­нального педагогического потенциала...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия