Студопедия — 5 страница. Вычисление средней арифметической и дисперсии вариационного ряда можно упростить, если использовать не первоначальные варианты (i = 1
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

5 страница. Вычисление средней арифметической и дисперсии вариационного ряда можно упростить, если использовать не первоначальные варианты (i = 1






Вычисление средней арифметической и дисперсии вариационного ряда можно упростить, если использовать не первоначальные варианты (i = 1, 2,..., m), а новые варианты:

, (1)

где с и k - специально подобранные постоянные.

Согласно свойствам 2 и 3 средней арифметической и дисперсии:

, (2)

, (3)

Откуда

(4)

. (5)

Затем, получим (6)

Теперь, заменяя в (4) и (5) и их выражениями и через варианты , получим

 

, (7)

, (8)

где определяются по (1).

Формулы (7) и (8) дадут заметное упрощение расчетов, если в качестве постоянной k взять величину (ширину) интервала по x, а в качестве с - середину серединного интервала. Если серединных интервалов два (при четном числе интервалов), то в качестве с рекомендуется взять середину одного из этих интервалов, например, имеющего большую частоту.

Генеральная и выборочная совокупности. Принцип образования выборки. Собственно-случайная выборка с повторным и бесповторным отбором членов. Репрезентативная выборка. Ос­новная задача выборочного метода.

Вся подлежащая изучению совокупность объектов (наблюдений) называется генеральной совокупностью. В матем-кой статистике понятие генеральной совокупности трактуется как совокупность всех мыслимых наблюдений, к-ые могли бы быть произведены при данном реальном комплексе условий, и в этом смысле его не следует смешивать с реальными совокупностями, подлежащими статистическому изучению. Так, обследовав даже все пр-тия подотрасли по определенным технико-эк-ким показателям, мы можем рассматривать обследованную совокупность лишь как представителя гипотетически возможной более широкой совокупности пр-тий, к-е могли бы функционировать в рамках того же реального комплекса условий.

Понятие генеральной совокупности в определенном смысле аналогично понятию случайной величины (закону распределения вер-тей, вероятностному пространству), т.к. полностью обусловлено определенным комплексом условий.

Та часть объектов, к-ая отобрана для непосредственного изучения из генеральной совокупности, называется выборочной совокупностью, или выборкой. Числа объектов (наблюдений) в генеральной или выборочной совокупности называются их объёмами. Генеральная совокупность может иметь как конечный, так и бесконечный объем.

Выборку можно рассматривать как некий эмпирический аналог генеральной совокупности. Сущность выборочного метода состоит в том, чтобы по некоторой части генеральной совокупности (по выборке) выносить суждение о ее свойствах в целом.

Преимущества выборочного метода наблюдения по сравнению со сплошным:

1) позволяет существенно экономить затраты ресурсов (материальных, трудовых, временных);

2) является единственно возможным в случае бесконечной генеральной совокупности или в случае, когда исследование связано с уничтожением наблюдаемых объектов (напр, исследование долговечности электрических лампочек, предельных режимов работы приборов и т.п.);

3) при тех же затратах ресурсов дает возможность проведения углубленного исследования за счет расширения программы исследования;

4) позволяет снизить ошибки регистрации, т.е. расхождения между истинным и зарегистрированным значениями признака.

Основной недостаток выборочною метода - ошибки исследования, называемые ошибками репрезентативности (представительства).

Однако неизбежные ошибки, возникающие при выборочном методе исследования в связи с изучением только части объектов, могут быть заранее оценены и посредством правильной организации выборки сведены к практически незначимым величинам. Между тем использование сплошного наблюдения даже там, где это принципиально возможно, не говоря уже о росте трудоемкости, стоимости и увеличении необходимого времени, часто приводит к тому, что каждое отдельное наблюдение поневоле проводится с меньшей точностью. А это уже сопряжено с неустранимыми ошибками и в конечном счете может привести к снижению точности сплошного наблюдения по сравнению с выборочным.

Чтобы по данным выборки иметь возможность судить о генеральной совокупности, она д.б. отобрана случайно. Случайность отбора элементов в выборку достигается соблюдением принципа равной возможности всем элементам генеральной совокупности быть отобранными в выборку. На практике это достигается тем, что извлечение элементов в выборку проводится путем жеребьевки (лотереи) или с помощью случайных чисел, имеющихся в специальных таблицах или вырабатываемых ЭВМ с помощью датчика случайных чисел.

Выборка называется репрезентативной (представительной), если она достаточно хорошо воспроизводит генеральную совокупность.

Различают следующие виды выборок:

1) собственно-случайная выборка, образованная случайным выбором элементов без расчленения на части или группы;

2) механическая выборка, в к-ую элементы из генеральной совокупности отбираются через определенный интервал. На­ пример, если объем выборки должен составлять 10% (10%-ная выборка), то отбирается каждый l0-й ее элемент и т.д.;

3) типическая (стратифицированная) выборка, в к-ую случайным образом отбираются элементы из типических групп, на к-ые по нек-му признаку разбивается генеральная совокупность;

4) серийная (гнездовая) выборка, в к-ую случайным образом отбираются не элементы, а целые группы совокупности (серии), а сами серии подвергаются сплошному наблюдению.

Используют два способа образования выборки:

1) повторный отбор (по схеме возвращенного шара), когда каждый элемент, случайно отобранный и обследованный, возвращается в общую совокупность и м.б. повторно отобран;

2) бесповторный отбор (по схеме невозвращенного шара), когда отобранный элемент не возвращается в общую совокупность.

Мат-кая теория выборочного метода основывается на анализе собственно-случайной выборки.

Обозначим:

- значения признака (случайной величины Х);

N и n - объемы генеральной и выборочной совокупностей;

- число элементов генеральной и выборочной совокупностей со значением признака ;

М и m - число элементов генеральной и выборочной совокупностей, обладающих данным признаком.

Средние арифметические распределения признака в генеральной и выборочной совокупностях называются соответственно генеральной и выборочной средними, а дисперсии этих распределений - генеральной и выборочной дисперсиями. Отношение числа элементов генеральной и выборочной совокупностей, обладающих нек-ым признаком А, к их объемам, называются соответственно генеральной и выборочной долями. Все формулы сведем в таблицу.

Замечание. В случае бесконечной генеральной совокупности (N = ∞) под генеральными средней и дисперсией понимается соответственно математическое ожидание и дисперсия распределения признака Х (генеральной совокупности), а под генеральной долей р - вероятность данного события.

Важнейшей задачей выборочного метода является оценка параметров (характеристик) генеральной совокупности по данным выборки.

Теоретическую основу применимости выборочного метода составляет закон больших чисел, согласно к-му при неограниченном увеличении объема выборки практически достоверно, что случайные выборочные характеристики как угодно близко приближаются (сходятся по вероятности) к определенным параметрам генеральной совокупности.

36. Понятие об оценке параметров генеральной совокупности. Свойства оценок: несмещенность, состоятельность, эффективность.

Сформулируем задачу оценки параметров в общем виде. Пусть распределение признака Х - генеральной совокупности - задается функцией вер-тей (для дискретной СВ Х) или плотностью вер-ти (для непрерывной СВ Х), к-ая содержит неизвестный параметр . Напр, это параметр λ в распределении Пуассона или параметры а и для нормального закона распределения и т.д.

Для вычисления параметра исследовать все элементы генеральной совокупности не представляется возможным. Поэтому о параметре пытаются судить по выборке, состоящей из значений (вариантов) . Эти значения можно рассматривать как частные значения (реализации) n независимых случайных величин каждая из к-ых имеет тот же закон распределения, что и сама СВ Х.

Определение. Оценкой параметра называют всякую функцию результатов наблюдений над СВ Х (иначе - статистику), с помощью к-ой судят о значении параметра :

.

Поскольку - случайные величины, то и оценка (в отличие от оцениваемого параметра - величины неслучайной, детерминированной) является случайной величиной, зависящей от закона распределения СВ Х и числа n.

О качестве оценки следует судить не по индивидуальным ее значениям, а лишь по распределению ее значений в большой сети испытаний, т.е. по выборочному распределению оценки.

Если значения оценки концентрируются около истинного значения параметра , т.е. основная часть массы выборочного распределения оценки сосредоточена в малой окрестности оцениваемого параметра , то с большой вер-тью можно считать, что оценка отличается от параметра лишь на малую величину. Поэтому, чтобы значение было близко к , надо, очевидно, потребовать, чтобы рассеяние случайной величины относительно , выражаемое, например, матем-ким ожиданием квадрата отклонения оценки от оцениваемого параметра , было по возможности меньшим. Таково основное условие, к-му должна удовлетворять «наилучшая» оценка.

Свойства оценок.

Определение. Оценка параметра называется несмещенной, если ее мат-кое ожидание равно оцениваемому параметру, т.е. .

в противном случае оценка называется смещенной.

Если это равенство не выполняется, то оценка , полученная по разным выборкам, будет в среднем либо завышать значение (если , либо занижать его (если ). Требование несмещенности гарантирует отсутствие систематических ошибок при оценивании.

Если при конечном объеме выборки n , т.е. смещение оценки , но , то такая оценка называется асимптотически несмещенной.

Определение. Оценка параметра называется состоятельной, если она удовлетворяет закону больших чисел, т.е. сходится по вер-ти к оцениваемому параметру:

, или .

В случае использования состоятельных оценок оправдывается увеличение объема выборки, т.к. при этом становятся маловероятными значительные ошибки при оценивании. Поэтому практический смысл имеют только состоятельные оценки. Если оценка состоятельна, то практически достоверно, что при достаточно большом n .

Если оценка параметра является несмещенной, а ее дисперсия при n → ∞, то оценка является и состоятельной. Это непосредственно вытекает из неравенства Чебышева:

.

Определение. Несмещенная оценка параметра сназывается эффективной, если она имеет наименьшую дисперсию среди всех возможных несмещенных оценок параметра , вычисленных по выборкам одного и того же объема n.

Т.к. для не смещенной оценки есть ее дисперсия , то эф-ть является решающим свойством, определяющим качество оценки.

Эффективность оценки определяют отношением: .

где и - соот-но дисперсии эффективной и данной оценок. Чем ближе е к 1, тем эффективнее оценка. Если е → 1 при n → ∞, то такая оценка называется асuмптотически эффективной.

37. Оценка генеральной доли по собственно-случайной выбор­ке. Несмещенность и состоятельность выборочной доли.

Пусть генеральная совок-ть содержит N элементов, из к-ых М обладает нек-ым признаком А. Следует найти «наилучшую» оценку генеральной доли . Рассмотрим в качестве такой возможной оценки параметра р его статистический аналог - выборочную долю .

а) Выборка повторная.

Выборочную долю можно представить как среднюю арифметическую n альтернативных случайных величин , т.е. , где каждая СВ (k=1,2,…,n) выражает число появлений признака в k-м элементе выборки (т.е. при наличии признака , при его отсутствии ) и имеет один и тот же закон распределения:

Случайные величины независимы.

Теорема. Выборочная доля повторной выборки есть несмещенная и состоятельная оценка генеральной доли причем ее дисперсия: , Где q = 1 – p.

☺ Докажем вначале несмещенность оценки w.

Матем-кое ожидание и дисперсия частости события в n независимых испытаниях, в каждом из к-рых оно может наступить с одной и той же вероятностью р, равны соответственно

, .

Т.к. вер-ть того, что любой отобранный в выборку элемент обладает признаком А, есть генеральная доля р, то из 1 равенства вытекает, что частость или выборочная доля w есть несмещенная оценка генеральной доли р.

Осталось доказать состоятельность оценки , к-ая следует из теоремы Бернулли: , или . ☻

б) Выборка бесповторная.

В случае бесповторной выборки СВ будут зависимыми.

Теорема. Выборочная доля бесповторной выборки есть несмещенная и состоятельная оценка генеральной доли , причем ее дисперсия:

.

☺ Очевидно, что и для бесповторной выборки , т.е. w - несмещенная оценка для генеральной доли . Это связано с тем, что мат-кое ожидание суммы любых случайных величин равно сумме их мат-ких ожиданий (в том числе суммы зависимых случайных величин, каковой является выборочная доля w бесповторной выборки).

Найдем дисперсию выборочной доли для бесповторной выборки:

,

При выводе формулы использовали то, что СВ Х = m в случае бесповтoрной выборки имеет гипергеометрическое распределение, и ее дисперсия определяется по формуле .

38. Оценка генеральной средней по собственно-случайной вы­борке. Несмещенность и состоятельность выборочной средней.

Пусть из генеральной совокупности объема N отобрана случайная выборка , где Xk - СВ, выражающая значение признака у k-гo элемента выборки (k=1,2,...,n). Следует найти «наилучшую» оценку для генеральной средней.

Рассмотрим в качестве такой возможной оценки выборочнyю среднюю х, т.е. .

а) Выборка повторная.

Закон распределения для каждой случайной величины (k=1,2,...,n) имеет вид:

Случайные величины независимы, т.к. независимы любые события (k=1,2,...n; i=1,2,...,m) и их комбинации.

Найдем числовые характеристики СВ :

, (1)

. (2)

т.е. мат-кое ожидание и дисперсия каждой СВ - это соот-но генеральная средняя и генеральная дисперсия.

Теорема. Выборочная средняя повторной выборки есть несмещенная и состоятельная оценка генеральной средней причем .

□ Докажем вначале несмещенность оценки. Найдем мат-кое ожидание выборочной средней , учитывая (2) и то, что - независимые случайные величины:

.

Осталось доказать состоятельность оценки , которая следует непосредственно из теоремы Чебышева: или

б) Выборка бесповторная

В этом случае случайные величины будут зависимыми.

Теорема. Выборочная средняя бесповторной выборки есть несмещенная и состоятельная оценка генеральной средней , причем

.

39. Оценка генеральной дисперсии по собственно-случайной выборке. Смещенность и состоятельность выборочной дисперсии (без вывода). Исправленная выборочная дисперсия.

На первый взгляд, наиболее подходящей оценкой для генеральной дисперсии является выборочная дисперсия . Следующая теорема свидетельствует о том, что не является «наилучшей» оценкой.

Теорема. Выборочная дисперсия повторной и бесповторной выборок есть смещенная и состоятельная оценка генеральной дисперсии .

Δ Принимая без док-ва состоятельность оценки , докажем, что она - смещенная оценка. В соответствии с 4 свойством дисперсии: . На основании свойства 3 средней арифметической и дисперсии, если все значения признака уменьшить на одно и то же число С, то средняя уменьшится на это число, т.е. , а дисперсия не изменится:

.

Полагая , получим .

а) Выборка повторная

Для повторной выборки выборочные значения рассматриваем как независимые случайные величины , каждая из к-ых имеет один и тот же закон распределения, что и у оценки генеральной средней с числовыми характеристиками (1) и (2), т.е. M, , k = 1,2,...,n.

Найдем мат-кое ожидание оценки :

.

Первый член в правой части .

Второй член с учетом того, что есть несмещенная оценка , т.е. , .

Поэтому .

б) Выборка бесповторная

Для бесповторной выборки - зависимые случайные величины. Можно показать, что

(т.к. объем генеральной совокупности N, как правило, большой и N ≈ N -1).

Итак, и для повторной выборки, и для бесповторной , т.е - смещенная оценка . ▲

Т.к. и , то выборочная дисперсия (в n среднем, полученная по разным выборкам) занижает генеральную дисперсию. Поэтому, заменяя на , мы допускаем систематическую погрешность в меньшую сторону. Чтобы ее ликвидировать, достаточно ввести поправку, умножив на . Тогда с учетом () получим «исправленную» выборочную дисперсию:







Дата добавления: 2015-08-12; просмотров: 2045. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Менадиона натрия бисульфит (Викасол) Групповая принадлежность •Синтетический аналог витамина K, жирорастворимый, коагулянт...

Разновидности сальников для насосов и правильный уход за ними   Сальники, используемые в насосном оборудовании, служат для герметизации пространства образованного кожухом и рабочим валом, выходящим через корпус наружу...

Дренирование желчных протоков Показаниями к дренированию желчных протоков являются декомпрессия на фоне внутрипротоковой гипертензии, интраоперационная холангиография, контроль за динамикой восстановления пассажа желчи в 12-перстную кишку...

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Типология суицида. Феномен суицида (самоубийство или попытка самоубийства) чаще всего связывается с представлением о психологическом кризисе личности...

ОСНОВНЫЕ ТИПЫ МОЗГА ПОЗВОНОЧНЫХ Ихтиопсидный тип мозга характерен для низших позвоночных - рыб и амфибий...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия