Студопедия — Лекция 7. Альфа-распад
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Лекция 7. Альфа-распад






7.1. Феноменологическое рассмотрение. Альфа-распадом называется самопроизвольный процесс превращения ядра (А, Z) в ядро (A – 4, Z – 2) с испусканием ядра гелия-4 (α; - частицы):

.

Согласно условию (5.1), такой процесс возможен, если энергия α-распада

. (7.1)

Выражая энергию покоя ядра через сумму энергий покоя нуклонов и энергию связи ядра, перепишем неравенство (7.1) в следующем виде:

,

или

(7.2)

Результат (7.2), в который входят лишь энергии связи ядер, обусловлен тем, что при α-распаде сохраняется не только общее число нуклонов, но и число протонов и нейтронов в отдельности.

Рассмотрим, как меняется энергия α-распада Еα при изменении массового числа A. Используя формулу Вайцзеккера для ядер, лежащих на теоретической линии стабильности, можно получить зависимость, представленную на рис. 7.1. Видно, что в рамках капельной модели α-распад должен наблюдаться для ядер с A > 155, причем энергия распада будет монотонно увеличиваться с ростом A.

На том же рисунке изображена реальная зависимость Еα от A, построенная с использованием экспериментальных данных об энергиях связи. Сравнивая две кривые, можно видеть, что капельная модель передает лишь общую тенденцию изменения Еα. В действительности самым легким радионуклидом, испускающим α-частицы, является 144Nd, т.е. реальная область α-радиоактивности несколько шире, чем предсказывает полуэмпирическая формула. Кроме того, зависимость энергии распада от A не монотонна, а имеет максимумы и минимумы. Наиболее ярко выраженные максимумы приходятся на области A = 140-150 (редкоземельные элементы) и A = 210-220. Появление максимумов связано с заполнением нейтронной и протонной оболочек дочернего ядра до магического числа: N = 82 и Z = 82. Как известно, заполненным оболочкам соответствуют аномально высокие энергии связи. Тогда, согласно модели нуклонных оболочек, энергия α-распада ядер с N или Z, равным 84 = 82 + 2, будет также аномально высока. Благодаря оболочечному эффекту область α-радиоактивности начинается с Nd (N = 84), а у подавляющего большинства α-активных ядер Z 84.

Увеличение числа протонов в ядре (при постоянном A) способствует α-распаду, т.к. увеличивает относительную роль кулоновского отталкивания, дестабилизирующего ядро. Поэтому энергия α-распада в ряду изобаров будет увеличиваться с ростом числа протонов. Увеличение числа нейтронов действует противоположным образом.

Для ядер, перегруженных протонами, конкурирующими процессами могут стать β+-распад или электронный захват, т.е. процессы, приводящие к уменьшению Z. Для ядер с избытком нейтронов конкурирующим процессом является β-распад. Начиная с массового числа A = 232, к перечисленным типам распада добавляется спонтанное деление. Конкурирующие процессы могут идти настолько быстро, что наблюдать α-распад на их фоне не всегда удается.

Рассмотрим теперь, как распределяется энергия распада между фрагментами, т.е. α-частицей и дочерним ядром, или ядром отдачи. Очевидно, что

, (7.3)

где Тα – кинетическая энергия α-частицы, Тя.о. – кинетическая энергия дочернего ядра (энергия отдачи). Согласно закону сохранения импульса (который в состоянии до распада равен нулю[56]), образовавшиеся частицы получают импульсы, равные по абсолютной величине и противоположные по знаку:

. (7.4)

Воспользуемся далее рис. 7.1, из которого следует, что энергия α-распада (а значит, и кинетическая энергия каждой из частиц) не превышает 10 МэВ. Энергия покоя α-частицы – около 4 ГэВ, т.е. в сотни раз больше. Еще больше энергия покоя дочернего ядра. В этом случае для установления связи кинетической энергии с импульсом можно использовать соотношение классической механики

. (7.5)

При подстановке (7.5) в (7.3) получаем

,

или

. (7.6)

Из (7.6) следует, что основную часть энергии распада уносит наиболее легкий фрагмент – α-частица. Так, при A = 200 на дочернее ядро отдачи приходится всего лишь 2 % от Еα. [57]

Однозначное распределение энергии распада между двумя фрагментами приводит к тому, что каждый радионуклид испускает альфа-частицы строго определенных энергий, или, иными словами, α-спектры являются дискретными. Благодаря этому по энергии α-частиц можно идентифицировать радионуклид: линии спектра служат своеобразными «отпечатками пальцев». При этом, как показывает эксперимент, в α-спектрах очень часто присутствует не одна, а несколько линий различной интенсивности с близкой энергией. В таких случаях говорят о тонкой структуре α-спектра (рис. 7.2).

Чтобы понять происхождение эффекта тонкой структуры, вспомним, что энергия α-распада есть не что иное, как разность между уровнями энергии материнского и дочернего ядра. Если бы переход совершался лишь из основного состояния материнского ядра в основное состояние дочернего, α-спектры всех радионуклидов содержали бы только по одной линии. Между тем оказывается, что переходы из основного состояния материнского ядра могут происходить и в возбужденные состояния.

Периоды полураспада α-излучателей изменяются в широких пределах: от 107 секунды до 1017 лет. Напротив, энергия испускаемых α-частиц лежит в узком диапазоне: 1-10 МэВ. Связь между постоянной распада λ; и энергией α-частиц Т α дается законом ГейгераНеттола, одна из форм записи которого:

, (7.7)

где С 1 и С 2 – константы, мало изменяющиеся при переходе от ядра к ядру. При этом увеличению энергии α-частиц на 1 МэВ соответствует уменьшение периода полураспада на несколько порядков величины.

7.2. Прохождение α-частиц через потенциальный барьер. До появления квантовой механики не было дано теоретического объяснения столь резкой зависимости λ от Т α. Более того, загадочной казалась сама возможность вылета из ядра α-частиц с энергиями, значительно уступающими высоте потенциальных барьеров, которые, как было доказано, окружают ядра. Например, опыты по рассеянию α-частиц 212Ро с энергией 8,78 МэВ на уране показывали, что вблизи ядра урана не наблюдается отклонений от закона Кулона; тем не менее уран испускает α-частицы с энергией всего лишь 4,2 МэВ. Каким же образом эти α-частицы проникают через барьер, высота которого, как минимум, 8,78 МэВ, а в действительности еще больше?..

На рис. 7.3 изображена зависимость потенциальной энергии U положительно заряженной частицы от расстояния до ядра. В области r > R между частицей и ядром действуют только силы электростатического отталкивания, в области r < R преобладают более интенсивные ядерные силы притяжения, препятствующие вылету частицы из ядра. Результирующая кривая U (r) имеет острый максимум в области r ~ R, получивший название кулоновского потенциального барьера. Высота барьера

, (7.8)

где Z 1 и Z 2 – заряды вылетающей частицы и дочернего ядра, R – радиус ядра, который в случае α-распада принимают равным 1,57· A 1/3 фм. Нетрудно подсчитать, что для 238U высота кулоновского барьера составит ~ 27 МэВ.

Вылет из ядра α-частиц (и других положительно заряженных нуклонных образований) объясняется квантовомеханическим эффектом тунелирования, т.е. возможностью частицы двигаться в классически запрещенной для нее области между точками поворота, где Т < U.

Для того чтобы найти вероятность прохождения положительно заряженной частицы через кулоновский потенциальный барьер, рассмотрим вначале прямоугольный барьер ширины a и высоты V, на который падает частица с энергией E (рис. 7.4). За пределами барьера в областях 1 и 3 уравнение Шредингера выглядит как

,

а во внутренней области 2 как

.

 

Решением его являются плоские волны

,

,

,

причем

.

Амплитуда А 1 соответствует волне, падающей на барьер, В 1 – волне, отраженной от барьера, А 3 – волне, прошедшей сквозь барьер (так как прошедшая волна уже более не отражается, амплитуда В 3 = 0). Поскольку Е < V,

величина q – чисто мнимая, и волновая функция под барьером

, (7.9)

где

.

Второе слагаемое в формуле (7.9) отвечает экспоненциально растущей волновой функции, а значит, и растущей с увеличением х вероятности обнаружить частицу под барьером. В связи с этим величина В 2 не может быть большой по сравнению с А 2. Тогда, положив В 2 просто равным нулю, имеем

. (7.10)

Коэффициент прозрачности D барьера, т.е. вероятность найти частицу, первоначально находившуюся в области 1, в области 3, есть просто отношение вероятностей обнаружить частицу в точках х = а и х = 0. Для этого достаточно знания волновой функции под барьером. В результате[58]

. (7.11)

Представим далее потенциальный барьер произвольной формы как совокупность N прямоугольных потенциальных барьеров с высотой V (x) и шириной Δ x (рис. 7.5). Вероятность прохождения частицы через такой барьер есть произведение вероятностей пройти все барьеры друг за другом, т.е.

Тогда, рассматривая барьеры бесконечно малой ширины и переходя от суммирования к интегрированию, получаем

(7.12)

Пределы интегрирования x 1 и x 2 в формуле (7.12) соответствуют классическим точкам поворота, в которых V (x) = E, при этом движение частицы в областях x < x 1 и x > x 2 считается свободным.

Для кулоновского потенциального барьера вычисление D согласно (7.12) можно провести точно. Это впервые было сделано Г.А. Гамовым в 1928 г., т.е. еще до открытия нейтрона (Гамов полагал, что ядро состоит из α-частиц).[59]

Для α-частицы с кинетической энергией T в потенциале вида u / r выражение для коэффициента прозрачности барьера принимает следующий вид:

, (7.13)

причем значение ρ; определяется равенством T = u / ρ;. Интеграл в показателе экспоненты после подстановки ξ; = r 1/2 принимает форму, удобную для интегрирования:

.

Последнее дает

.

Если высота кулоновского барьера значительно больше, чем энергия α-частицы, то ρ; >> R. В этом случае

. (7.14)

Подставляя (7.14) в (7.13) и учитывая, что ρ; = BR / T, получаем

. (7.15)

В общем же случае, когда высота кулоновского барьера сравнима с энергией испускаемой частицы, коэффициент прозрачности D дается следующей формулой:

, (7.16)

где – приведенная масса двух разлетающихся частиц (для α-частицы она очень близка к ее собственной массе). Формула (7.16) дает для 238U значение D = 10–39, т.е. вероятность тунелирования α-частиц крайне мала.

Результат (7.16) был получен для случая центрального разлета частиц, т.е. такого, когда α-частица испускается ядром строго в радиальном направлении. Если же последнее не имеет места, то уносимый α-частицей момент импульса не равен нулю. Тогда при расчетах D следует учитывать поправку, связанную с наличием дополнительного центробежного барьера:

, (7.17)

где l = 1, 2, 3, и т.д.

Значение Uц (R) называется высотой центробежного барьера. Существование центробежного барьера приводит к возрастанию интеграла в (7.12) и уменьшению коэффициента прозрачности. Однако эффект центробежного барьера не слишком велик. Во-первых, поскольку вращательная энергия системы в момент разлета Uц (R) не может превышать энергию α-распада T, то чаще всего , и высота центробежного барьера не превышает 25% от кулоновского. Во-вторых, следует учесть, что центробежный потенциал (~1/ r 2) гораздо быстрее убывает с расстоянием, чем кулоновский (~1/ r). В результате вероятность испускания α-частицы с l ≠ 0 имеет практически тот же порядок величины, что и при l = 0.

Возможные значения l определяются правилами отбора по моменту импульса и четности, которые вытекают из соответствующих законов сохранения. Так как спин α-частицы равен нулю, а ее четность положительна, то

(7.18)

(индексы 1 и 2 относятся к материнскому и дочернему ядру соответственно). С помощью правил (7.18) нетрудно, например, установить, что α-частицы 239Pu (рис. 7.2) с энергией 5,157 МэВ испускаются только при центральном разлете, тогда как для α-частиц с энергией 5,144 и 5,016 МэВ l = 2.

7.3. Скорость α-распада. Вероятность α-распада как сложного события – произведение двух величин: вероятности образования α-частицы внутри ядра и вероятности покинуть ядро. Процесс образования α-частицы – чисто ядерный; его довольно сложно рассчитать точно, поскольку ему присущи все трудности ядерной задачи. Тем не менее, для простейшей оценки можно принять, что α-частицы в ядре существуют, что называется, «в готовом виде». Пусть v – скорость α-частицы внутри ядра. Тогда на его поверхности она окажется n раз в единицу времени, где n = v /2 R. Положим, что по порядку величины радиус ядра R равен длине волны де Бройля α-частицы (см. приложение Б), т.е. , где . Рассматривая, таким образом, вероятность распада как произведение коэффициента прозрачности барьера и частоты соударений α-частицы с барьером, имеем

. (7.19)

Если коэффициент прозрачности барьера удовлетворяет соотношению (7.15), то после подстановки и логарифмирования (7.19) мы получим закон Гейгера-Неттола (7.7).[60] Принимая энергию α-частиц T << В, можно приближенно определить, как зависят коэффициенты формулы (7.7) от А и Z радиоактивного ядра. Подставляя в (7.15) высоту кулоновского барьера (7.8) и учитывая, что при α-распаде Z 1 = Zα = 2 и μ; ≈ Mα, имеем

,

где Z 2 – заряд дочернего ядра. Тогда логарифмируя (7.19), найдем, что

,

.

Таким образом, С 1 очень слабо (логарифмически) зависит от массы ядра, а С 2 линейно зависит от его заряда.

Согласно (7.19), частота столкновений α-частицы с потенциальным барьером составляет для большинства α-радиоактивных около 5·1020 с–1.[61] Следовательно, величиной, определяющей постоянную α-распада оказывается коэффициент прозрачности барьера, сильно зависящий от энергии, так как последняя входит в показатель экспоненты. С этим и связана узость диапазона, в котором могут меняться энергии α-частиц радиоактивных ядер: частицы с энергиями выше 9 МэВ вылетают практически мгновенно, тогда как при энергиях ниже 4 МэВ они живут в ядре настолько долго, что α-распад очень трудно зарегистрировать.

Как уже отмечалось, спектры α-излучения часто имеют тонкую структуру, т.е. энергия испускаемых частиц принимает не одно, а целый ряд дискретных значений. Появление в спектре частиц с меньшей энергией (короткопробежных) соответствует образованию дочерних ядер в возбужденных состояниях. В силу закона (7.7) выход короткопробежных α-частиц всегда значительно меньше выхода частиц основной группы. Поэтому тонкая структура α-спектров связана, как правило, с переходами на вращательно возбужденные уровни несферических ядер с невысокой энергией возбуждения.

Если распад материнского ядра происходит не только из основного, но и из возбужденных состояний,[62] наблюдают длиннопробежные α-частицы. Примером могут служить длиннопробежные α-частицы, испускаемые ядрами изотопов полония 212Po и 214Po. Таким образом, тонкая структура α-спектров в ряде случаев несет информацию об уровнях не только дочерних, но и материнских ядер.

Учет того обстоятельства, что α-частица не существует в ядре, но образуется из составляющих ее нуклонов (двух протонов и двух нейтронов), а также более строгое описание движения α-частицы внутри ядра требуют и более детального рассмотрения физических процессов, происходящих в ядре. В связи с этим не приходится удивляться, что α-распады ядер подразделяются на облегченные и задержанные. Облегченным называется распад, для которого достаточно хорошо выполняется формула (7.19).[63] Если же реальный период полураспада превышает рассчитанный более чем на порядок,[64] такой распад называют задержанным.

Облегченный α-распад наблюдается, как правило, у четно-четных ядер, а задержанный – у всех остальных. Так, переходы нечетного ядра 235U в основное и первое возбужденное состояние 231Th замедляются почти в тысячу раз. Если бы не данное обстоятельство, этот важный радионуклид (235U) оказался бы настолько короткоживущим, что не сохранился бы в природе к настоящему времени.

Качественно задержанный α-распад объясняется тем, что переход в основное состояние при распаде ядра, содержащего неспаренный нуклон (с наименьшей энергией связи) может иметь место только тогда, когда этот нуклон становится частью α-частицы, т.е. когда происходит разрыв другой пары нуклонов. Такой путь образования α-частицы значительно более затруднен, чем ее построение из уже существующих пар нуклонов в четно-четных ядрах. По этой причине и может происходить задержка перехода в основное состояние. Если, с другой стороны, α-частица все же образуется из пар нуклонов, уже существующих в таком ядре, дочернее ядро должно после распада оказаться в возбужденном состоянии. Последнее рассуждение объясняет довольно высокую вероятность перехода в возбужденные состояния для нечетных ядер (рис. 7.2).








Дата добавления: 2015-08-12; просмотров: 893. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Классификация потерь населения в очагах поражения в военное время Ядерное, химическое и бактериологическое (биологическое) оружие является оружием массового поражения...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия