Студопедия — ПРИЛОЖЕНИЕ А. Формула Резерфорда
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПРИЛОЖЕНИЕ А. Формула Резерфорда






Когда α-частица пролетает вблизи ядра, на нее действует кулоновская сила отталкивания

.

В этом случае траектория частицы представляет собой гиперболу. Обозначим буквой θ; угол между асимптотами гиперболы (рис. А), характеризующий отклонение частицы от первоначального направления (угол рассеяния). Расстояние b от ядра до первоначального направления полета α-частицы называется прицельным параметром. Чем ближе пролетает частица от ядра (чем меньше b), тем сильнее она рассеивается (тем больше θ;).

Если считать рассеивающее атомное ядро бесконечно тяжелым, то из закона сохранения энергии следует, что вдали от ядра импульс рассеянной α-частицы р по модулю будет таким же, как и импульс до рассеяния р 0. Следовательно, модуль приращения импульса α-частицы, возникающего в результате рассеяния

, (А.1)

где v – начальная скорость частицы, mα – ее масса. Согласно 2-му закону Ньютона,

.

Спроектировав фигурирующие в этом равенстве векторы на направление Δ; p, получим:

. (А.2)

Из рис. A видно, что проекция силы F на направление вектора Δ; p равна F cos ψ;. Угол ψ; можно выразить через полярный угол φ; и угол рассеяния θ;:

.

Следовательно

.

Подставим это выражение в (А.2), выразив dt как ;/ (здесь точка означает дифференцирование по времени):

. (А.3)

Произведение равно M / mα, где M – момент импульса α-частицы, взятый относительно рассеивающего ядра. Кулоновская сила, действующая на α-частицу, является центральной. Поэтому момент импульса остается все время постоянным и равным своему первоначальному значению mαvb. Тогда после замены на vb интеграл (А.3) легко вычисляется:

. (А.4)

Сопоставляя (А.1) и (А.4), найдем, что

. (А.5)

Рассмотрим слой рассеивающего вещества настолько тонкий, чтобы каждая α-частица при прохождении через него пролетала вблизи только одного ядра, т.е. претерпевала лишь однократное рассеяние. Чтобы рассеяться на угол, лежащий в пределах от θ; до θ;+ ;, частица должна пролететь вблизи одного из ядер по траектории, прицельный параметр которой заключен в пределах от b до b + db, причем ; и db, как это следует из (А.5), связаны соотношением

. (А.6)

Знак «минус» в (А.6) обусловлен тем, что с увеличением b угол рассеяния убывает. Но так как далее нас будет интересовать лишь абсолютное значение db в функции от θ; и ;, знак минус учитывать не будем.

Обозначим площадь поперечного сечения пучка α-частиц буквой S. Тогда количество атомов рассеивающей фольги на пути пучка равно nSa, где n – число атомов в единице объема, a – толщина фольги. Если считать, что α-частицы распределены равномерно по сечению пучка и число их велико, то количество частиц dN, пролетающих вблизи одного из ядер по траектории с прицельным параметром от b до b+db, будет равно

, (А.7)

где N – общее количество частиц в пучке.

Выразив в (А.7) b и db через θ; и ; в соответствии с (А.5) и (А.6), получим

.

Далее преобразуем множитель, содержащий угол θ;; тогда

.

Выражение 2πsin θdθ; есть телесный угол d Ω, в пределах которого заключены направления, соответствующие углам рассеяния от θ; до θ;+ ;. Учитывая, что кинетическая энергия α-частицы Tα = mαv 2/2, окончательно получаем

. (1.2)

 

 







Дата добавления: 2015-08-12; просмотров: 461. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Факторы, влияющие на степень электролитической диссоциации Степень диссоциации зависит от природы электролита и растворителя, концентрации раствора, температуры, присутствия одноименного иона и других факторов...

Йодометрия. Характеристика метода Метод йодометрии основан на ОВ-реакциях, связанных с превращением I2 в ионы I- и обратно...

Броматометрия и бромометрия Броматометрический метод основан на окислении вос­становителей броматом калия в кислой среде...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия