Студопедия — Величина
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Величина






(4.4)

- работа силы на пути .

Таким образом, работа результирующей всех сил, действующих на частицу, идет на приращение кинетической энергии этой частицы:

. (4.5)

 
 

Формула (4.3) для кинетической энергии частицы справедлива как в инерциальной, так и в неинерциальной системе отсчет а. При переходе из одной системы отсчета в другую, движущуюся относительно первой с некоторой скоростью , скорость частицы меняется, следовательно, меняется и кинетическая энергия.

Рассмотрим две системы отсчета:

· инерциальную

· систему отсчета , движущуюся относительно поступательно со скоростью . Скорость может быть как постоянной (тогда система инерциальная), так и зависящей от времени (в этом случае система неинерциальная).

Из рисунка 4.1 видно, что радиус-векторы -той материальной точки в системах отсчета и связаны соотношением: ,

где - радиус-вектор в системе точки (начала отсчета координат в системе ). Продифференцировав это выражение по времени, получаем для скоростей: .

Возведем это равенство в квадрат: .

Подставим значение в формулу кинетической энергии механической системы, получаем кинетическую энергию относительно системы :

,или .

Здесь - масса всей системы,

- импульс механической системы в ,

- кинетическая энергия системы в .

Очевидно, , где - скорость центра масс системы в .

Поэтому, если в качестве взять систему центра масс механической системы, то

и .

Это теорема Кёнига: кинетическая энергия механической системы равна сумме кинетической энергии той же системы в ее движении относительно центра масс и кинетической энергии, которую имела бы рассматриваемая система, двигаясь поступательно со скоростью центра масс.

Из теоремы Кёнига следует, что кинетическая энергия твердого тела равна сумме его кинетической энергии в поступательном движении со скоростью центра масс тела и кинетической энергии вращения этого тела вокруг центра масс

Выражение (4.4) можно представить в виде:

где - угол между направлениями силы и перемещения.

· если - острый (), работа положительна;

· если - тупой (), работа отрицательна;

· При работа равна нулю.

Выражению (4.4) можно придать наглядный геометрический смысл.

На рис.4.2 представлен график проекции силы на направление перемещения как функции положения частицы на траектории.

И з рисунка видно, что

· элементарная работа численно равна площади заштрихованной полоски,

· работа на пути 1-2 численно равна площади фигуры, ограниченной кривой , вертикальными прямыми 1 и 2 и осью S.

Отметим следующее важное обстоятельство: формула (4.4) справедлива не только для частицы, но и вообще для любого тела (или системы тел). Надо только иметь в виду, что под dr (или ds) следует понимать перемещение точки приложения силы F. Игнорирование этого обстоятельства зачастую приводит к ошибочным результатам.

Из рисунка видно, что элементарная работа численно равна площади заштрихованной полоски, а работа А на пути от точки 1 до точки 2 — площади фигуры, ограниченной кривой, ординатами 1 и 2 и осью s. При этом площадь фигуры

· над осью s берется со знаком плюс (она соответствует положительной работе),

· а площадь фигуры под осью s —со знаком минус (она соответствует отрицательной работе).

 

Пусть на тело действует одновременно несколько сил .

Из дистрибутивности скалярного произведения векторов вытекает, что работа , совершаемая результирующей силой на пути , может быть представлена в виде:

- работа результирующей нескольких сил равна алгебраической сумме работ, совершаемых каждой силой в отдельности.

Очевидно, элементарное перемещение ,

поэтому выражение для э лементарной работы (4.4) принимает вид:

Тогда работа, совершаемая за промежуток времени от до , будет равна

Единицей работы в СИ является джоуль (Дж). Джоуль — это работа силы в 1 Н на пути 1 м (при условии, что направление силы совпадает по направлению с перемещением), или 1 Дж =1 Н м.

Для характеристики скорости, с которой совершается работа, вводят величину, называемую мощностью.

Мощность, по определению, — это работа, совершаемая силой за единицу времени.

Если за промежуток времени dt сила совершает работу , то мощность, развиваемая этой силой в данный момент времени, есть

Учитывая, что , получаем

Таким образом, мощность, развиваемая силой F, равна скалярному произведению вектора силы на вектор скорости, с которой движется точка приложения данной силы. Как и работа, мощность — величина алгебраическая.

Зная мощность силы F, можно найти и работу, которую совершает эта сила за промежуток времени t. В самом деле, представив подынтегральное выражение в формуле (4.2) в виде

, получим

Единицей мощности в СИ является ватт (Вт), равный джоулю в секунду (Дж/с).

Когда говорят о работе (или мощности), то необходимо в каждом конкретном случае четко указывать или представлять себе, работа какой именно силы (или сил) имеется в виду. В противном случае, как правило, неизбежны недоразумения.

Работа и мощность силы зависят от выбора системы отсчета.







Дата добавления: 2015-08-12; просмотров: 490. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Метод архитекторов Этот метод является наиболее часто используемым и может применяться в трех модификациях: способ с двумя точками схода, способ с одной точкой схода, способ вертикальной плоскости и опущенного плана...

Примеры задач для самостоятельного решения. 1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P   1.Спрос и предложение на обеды в студенческой столовой описываются уравнениями: QD = 2400 – 100P; QS = 1000 + 250P...

Дизартрии у детей Выделение клинических форм дизартрии у детей является в большой степени условным, так как у них крайне редко бывают локальные поражения мозга, с которыми связаны четко определенные синдромы двигательных нарушений...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия