Студопедия — Метод Гаусса для решения систем линейных уравнений
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Метод Гаусса для решения систем линейных уравнений






Пусть требуется решить систему n линейных алгебраических уравнений с n неизвестными:

 

(3.9)

 

Прямой ход метода Гаусса преобразует систему (3.9) к треугольному виду исключением соответствующих неизвестных. Пусть a 11 ≠ 0. Первый шаг заключается в исключении переменной x 1 с помощью первого уравнения из остальных уравнений. Разделим первое уравнение на a 11:

 

(3.10)

 

Затем от второго уравнения отнимем первое уравнение, умноженное на a 21. В результате, на месте второго уравнения получим уравнение, не содержащее x 1. Чтобы исключить x 1 из третьего уравнения отнимем от него первое уравнение, умноженное на a 31. Аналогично исключаем x 1 из четвертого и последующих уравнений. Для исключения x 1 из i -го уравнения (i = 2, 3, …, n) применим формулы:

 

(3.11)

 

В результате этих вычислений получим систему вида:

 

(3.12)

 

На втором шаге исключаем переменную x 2 с помощью второго уравнения из третьего и последующих уравнений. Предположим, что . Разделим второе уравнение на :

 

(3.13)

 

В системе (3.12) с помощью второй строки исключим x 2 из i -го уравнения(i = 3, 4, …, n), применяя формулы:

 

(3.14)

 

Система (3.12) преобразуется к следующему виду:

 

(3.15)

 

1. В общем случае, на шаге m, для m = 1, 2, …, n – 1, делим сначала m -ое уравнение на :

 

(3.16)

 

а затем исключаем переменную xm с помощью m -ого уравнения из i -го,
где i = m + 1, …, n:

 

(3.17)

 

Здесь предполагается, что на каждом шаге выполняется условие .

В результате (n – 1)-го шага система (3.9) приобретает вид:

 

(3.18)

 

2. Обратный ход метода Гаусса вычисляет неизвестные xi в обратном порядке. Из последнего уравнения в (3.18) находим

 

(3.19)

 

Неизвестные xi определяем по следующим формулам:

 

(3.20)

 

Метод Гаусса предполагает, что на m -ом шаге выполняется условие . Если это условие не выполняется, то алгоритм перестанет работать, так как столкнется с делением на ноль. Кроме этого, в случае выполнения условия , может возникнуть ситуация, когда ведущий элемент близок к нулю, что тоже может привести к неприятностям в виде больших погрешностей.

Чтобы избежать этих трудностей применяют метод Гаусса с выбором главного элемента. В качестве ведущего элемента на каждом шаге выбирают наибольший по модулю элемент столбца и переставляют соответствующую строку с другой строкой так, чтобы найденный элемент стал диагональным, затем исключают соответствующую переменную. Так как при этих перестановках в уравнениях переменные остаются на своих местах, решение преобразованной системы совпадает с решением исходной системы уравнений.

Метод Гаусса с выбором главного элемента по столбцам отличается от алгоритма (3.16) — (3.20) только тем, что перед преобразованием (3.16) надо выполнить поиск максимального по модулю элемента в m -ом столбце и переставить строки системы уравнений так, чтобы максимальный элемент стал диагональным элементом матрицы коэффициентов.

 







Дата добавления: 2015-08-12; просмотров: 874. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия