Студопедия — Нарушения вентиляционно-перфузионных отношений;
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нарушения вентиляционно-перфузионных отношений;






Нарушения диффузионных процессов;

Смешанные формы нарушений.

Нарушения вентиляции. Условием нормальной вентиляции легких является равномерное распределение вдыхаемого воздуха по всем вентилируемым альвеолам при нормальной проходимости воздухоносных путей. Вентиляция альвеол обеспечивает восполнение недостатка кислорода и удаление из альвеол избытка поступающего в них углекислого газа. Вентиляция осуществляется благодаря активному вдоху с участием дыхательной мускулатуры и пассивно-активновному выдоху за счет ретракции грудной клетки и сокращению экспираторной мускулатуры.

Объем легких и дыхательных путей разделяют на альвеолярный объем, где происходит процесс газообмена, и мертвое пространство, которое представляет собой сочетание анатомического (статического) мертвого пространства (в нем газообмен не происходит) и функционального мертвого пространства (часть альвеол, которые в определенный момент времени не вентилируются и/или не перфузируются). В каждом легком взрослого человека насчитывается примерно 3,6×108 альвеол, соответственно, площадь поверхности альвеол составляет 60-90 м2.

На долю анатомического суммарного мертвого пространства у здорового человека в возрасте 25-30 лет приходится примерно 30% дыхательного объема. С возрастом этот показатель увеличивается до 40%. Суммарное мертвое пространство можно определить по следующей формуле:

МП/ДО = (раСО2 -рввСО2)/раСО2I

где: МП – мертвое пространство, ДО – дыхательный объем, раСО2 – напряжение СО2 в артериальной крови, рвСО2 – парциальное давление СО2 в выдыхаемом воздухе.

К анатомическому мертвому пространству относятся воздухоносные пути – рот, нос, глотка, гортань, трахея, бронхи. Нижняя граница анатомического мертвого пространства находится на уровне терминальных бронхиол. У здоровых людей на его долю приходится 0,12-0,18 л.

Функциональное мертвое пространство включает в себя альвеолы, плохо или совсем не перфузируемые, то есть те альвеолы, в которых газообмен невозможен вследствие изменения вентиляционно-перфузионных соотношений.

Любой патологический процесс ведет к увеличению функционального мертвого пространства. При эмболии ветвей легочной артерии различные по размеру участки легких могут быть выключены из процесса газообмена. Уменьшение плотности капиллярной сети также приведет к увеличению функционального мертвого пространства. Существенное увеличение до 60-75% дыхательного объема функционального мертвого пространства наблюдается при пневмосклерозе, хроническом бронхите, бронхиальной астме, эмболии легочной артерии. У больных с выраженной кровопотерей, то есть с уменьшенным объемом циркулирующей крови, функциональное мертвое пространство увеличено, прежде всего, в результате гипервентиляции. Существенно возрастает функциональное мертвое пространство на фоне гипотензии, вызванной ганглиоблокаторами. Объем легких определяется транспульмональным давлением, которое определяется как разность между давлением в альвеолах и внутриплевральным давлением (разность давлений, действующих на внутреннюю и наружную поверхности легких) и имеет отрицательное значение (-2-3 см вод.ст.). На наружную поверхность грудной клетки действует атмосферное давление, которое уравновешивается суммой внутриплеврального давления и давления, создаваемого эластической тягой грудной клетки. Внутриплевральное давление меньше атмосферного на величину эластической тяги грудной клетки, поэтому его часто называют отрицательным, принимая уровень атмосферного давления за ноль. При изменении транспульмонального давления объем легких увеличивается или уменьшается.

Таблица 1

Показатели функционального состояния легких

Обозначения   Показатели   Размерность   Норма  
ДО   Дыхательный объем   л   0,3-0,9  
ЧД   Частота дыхания   в мин   10-16  
МОД   Минутный объем дыхания   л/мин   3,2-10,0  
АВ   Альвеолярная вентиляция   %МОД   66-80  
МВД   Максимальная вентиляция легких   л/мин   50,0-80,0  
РОвд   Резервный объем вдоха   л 1,0-2,0  
РОвыд   Резервный объем выдоха   л 1,0-1,5  
ЖЕЛ   Жизненная емкость легких   л 3,0-5,0  
ФЖЕЛ1   Форсированная жизненная емкость легких за первую секунду выдоха   %ЖЕЛ   70,0-83,0  
ОЗ   Объем закрытия дыхательных путей   -10%ЖЕЛ      
ООЛ   Остаточный объем легких   л   1,0-1,5  
ФОЕ   Функциональная остаточная емкость   л 2,0-3,5  
ОЕЛ   Общая емкость легких   л   3,5-6,0  
АМП   Анатомическое мертвое пространство   л 0,12-0,18  
ФМП   Функциональное мертвое пространство   л   0,15  
ТПД   Транспульмональное давление   см вод.ст.   -2,0-3,0  
РД   Работа дыхания   гм/мин   0,15-0,40  
РЛ   Растяжимость легких   л/см вод.ст.   0,15-0,35  
ЛК   Легочный кровоток   л/мин   3,5-8,0  
В/П   Вентиляцшнно-перфузионное отношение       0,7-1,0  
ДЛ О2   Диффузионная способность легких для O2   мл/мм рт.ст.   15,0  

Трансбронхиальное давление определяет ширину просвета дыхательных путей и равно разности между давлением на внутреннюю стенку бронха и внутриплевральным давлением.

В клинике для оценки функционального состояния аппарата внешнего дыхания обследование больных проводят в состоянии относительного покоя, желательно утром натощак, в положении сидя при исключении эмоционального воздействия и, по возможности, действия лекарственных препаратов. Метод спирографии позволяет определить величину статических легочных объемов, состояние бронхиальной проходимости. Правильная трактовка результатов возможна приопределении отношения фактических параметров к должным величинам. Расчет должных величин проводят с учетом возраста, пола, антропометрических показателей (рост, площадь поверхности тела), уровня основного обмена.

Для оценки функционального состояния аппарата внешнего дыхания у взрослых используют следующие показатели (Таблица 1).

Одним из основных показателей вентиляции является МОД, который рассчитывают по формуле:

МОД = ДО×ЧД

Величина МОД широко используется для оценки вентиляции в норме и патологии. Однако одинаковые величины МОД могут быть получены при различных сочетаниях дыхательного объема и частоты дыхания. Понятно, что при одних и тех же значениях МОД для организма эффективным является редкое и глубокое дыхание по сравнению с частым и поверхностным, хотя на поддержание такого МОД тратиться больше энергии (кислорода).

Объем выдыхаемого воздуха после максимально глубокого вдоха представляет собой жизненную емкость легких (ЖЕЛ). ЖЕЛ состоит из резервного объема вдоха, дыхательного объема (ДО) и резервного объема выдоха. Суммарно остаточный объем легких (ООЛ)и ЖЕЛ формируют общую емкость легких (ОЕЛ).

Нарушения альвеолярной вентиляции (гиповентиляция, гипервентиляция, неравномерная вентиляция) возникают в результате внелегочных (нарушения нервной регуляции, повреждения дыхательной мускулатуры, грудной клетки) и легочных (изменения проходимости дыхательных путей и повреждения паренхимы) расстройств.

Показателем вентиляции является МОД, который можно представить в виде суммы показателей альвеолярной вентиляции и вентиляции мертвого пространства. Объем альвеолярной вентиляции не должен составлять менее 66% МОД. Нарушения альвеолярной вентиляции выражаются в виде:

1. Альвеолярной гиповентиляции,

2. Альвеолярной гипервентиляции;

3. Неравномерной вентиляции.

1. Альвеолярная гиповентиляция – это типовая форма нарушения внешнего дыхания, при которой минутный объем вентиляции меньше газо-обменной потребности организма в единицу времени. Последствия гиповентиляции характеризуются увеличением содержания СО2 в альвеолярном воздухе и, соответственно, в артериальной крови (гиперкапния) снижением содержание кислорода в альвеолярном воздухе и артериальной крови (гипоксемия). Обязательным признаком альвеолярной гиповентиляции является респираторный ацидоз. Устранение гипоксемии возможно при дыхании чистым кислородом, однако это не сопровождается адекватной элиминацией СО2, и ацидоз сохраняется. Гиповентиляция при легочной патологии является проявлением истощения резерва аппарата внешнего дыхания вследствие снижения сократительной способности дыхательной мускулатуры и вторичного угнетения дыхательного центра. В основе развития альвеолярной гиповентиляции лежат два основных механизма:

1. Нарушения биомеханики дыхания;

2. Расстройство механизмов регуляции внешнего дыхания.

I. Биомеханика дыхания изучает соотношение давлений в плевральной полости, альвеолах и воздухоносных путях объемам легких, а также скорости движения воздуха, различные типы сопротивления (эластическое, аэродинамическое, инерционное) и работу дыхательной мускулатуры. Нарушения биомеханики дыхания могут быть связаны с поражением дыхательного аппарата на любом уровне и проявляются:

1. Обструктивными;

2. Рестриктивными нарушениями.

А. Обструктивные нарушения могут быть эндо- и экзобронхиального генеза. Гиперсекреция бронхиальных желез, бронхоспазм, отечно-воспалительные изменения слизистой возникают при функциональных нарушениях бронхиол и обычно хорошо поддаются терапии в отличие от обструкции бронхов в результате уменьшения их проходимости на фоне легочной эмфиземы. Возможно нарушение проходимости магистральных дыхательных путей при сдавлении опухолью или загрудинным зобом.

Обструктивный тип расстройств дыхания связан с затруднением проходимости дыхательных путей в связи с увеличением неэластического сопротивления потоку воздуха, что ведет к снижению вентиляции как при физической нагрузке, так и в состоянии покоя. В инспираторную фазу просвет бронхов увеличивается, а в экспираторную – уменьшается до такой степени, что может развиться полное закрытие мелких бронхиол.

Неэластическое сопротивление легких обусловлено тремя компонентами:

(1) аэродинамическое (вязкостное) сопротивление дыхательных путей возникает из-за перемещения молекул газа и их трения о стенки дыхательных путей;

(2) фрикционное (деформационное) сопротивление появляется в связи с действием сил трения во время дыхания (при патологических изменениях дыхательных путей и легочной паренхимы фрикционное сопротивление возрастает в несколько раз);

(3) инерционное сопротивление зависит от массы тела и, особенно, грудной стенки, существует в покое (дыхательная пауза) при дыхании (вдох, выдох).

Общее неэластическое сопротивление зависит от дыхательного объема. У здоровых лиц оно составляет 1,3-3,5 см вод.ст./л/мин. При спокойном вдохе сила дыхательных мышц необходима для преодоление сопротивления эластической тяги легких. При форсированном дыхании резко возрастают силы, направленные на преодоление неэластического сопротивления и расходуемые на преодоление сопротивления току воздуха в трахее и бронхах. Величину неэластического сопротивления определяет состояние воздухоносных путей и скорость потока воздуха. При обструктивных нарушениях сопротивление току воздуха при вдохе и выдохе возрастает (гипертоническая дискинезия). Возможно пролабирование мембранной части трахеи и крупных бронхов и частичная или полная обтурация их просвета (гипотоническая дискинезия). Утрата легкими эластических свойств приводит к спадению мелких бронхов и, соответственно, к увеличению бронхиального сопротивления на выдохе (эмфизема легких).

При тахипноэ скорость воздушного потока увеличивается, происходит завихрение воздуха, увеличивается турбулентный компонент сопротивления, для преодоления которого требуется дополнительное усилие дыхательной мускулатуры. Адекватной альвеолярной вентиляции при этом не происходит, а объемно-временные параметры изменяются.

При повышении сопротивления дыхательных путей увеличивается работа дыхательных мышц, повышаются энергетические затраты и кислородная задолженность дыхательной мускулатуры. Следовательно, компенсаторно-приспособительные возможности аппарата внешнего дыхания ограничиваются.

При хронических неспецифических заболеваниях легких, обструктивной эмфиземе, интерстициальном отеке легких, бронхиолите возникает раннее экспираторное закрытие дыхательных путей. Этот физиологический механизм у здорового человека включается в фазу выдоха, когда объем легких, уменьшается и приближается к остаточному объему легких. Происходит постепенное закрытие дыхательных путей, начиная с нижних отделов легких и захватывая вышерасположенные зоны. Экспираторное закрытие дыхательных путей происходит в том месте, где плевральное давление в какой-то момент выдоха превышает внутрибронхиальное. Согласно правилу Бернулли, сумма давлений, направленных вдоль потока и радиально в стенке бронха, – величина постоянная. По мере увеличения осевого давления при констрикции бронха потеря эластичности бронха и альвеол, растягивающих его, радиально направленное давление становится недостаточным, чтобы предупредить спадение бронха на выдохе.

Заболевания, связанные с обструктивными нарушениями (бронхиальная астма, обструктивный бронхит, эмфизема, частичная или полная обтурация бронхов, воспалительные изменения трахеи, бронхов, сопровождающиеся отеком или гипертрофией слизистой дыхательных путей и другие), встречаются в клинике значительно чаще.

Большое значение в патогенезе обструктивных нарушений имеет гиперреактивность бронхов – выраженная бронхоконстрикция, возникающая в ответ на раздражение. Вещества, обладающие раздражающим действием, проникают в интерстиций, активируют нервные рецепторы, в первую очередь п.vagus, и вызывают бронхоспазм, который устраняется фармакологической блокадой блуждающего нерва. Основой бронхоконстрикции является специфическая (аллергическая) и неспецифическая (неаллергическая) гиперреактивность.

В тканях легких образуются бронхо- и вазоактивные вещества. Эпителий секретирует фактор, обладающий свойствами бронхорелаксации. При бронхоспазме этот фактор в большей степени влияет на тонус гладкой мускулатуры крупных бронхов. Секреция его снижена при повреждении эпителиальных клеток, например, при бронхиальной астме, что способствует стойкой обструкции бронхов. В эндотелии легочных сосудов и эпителии бронхов синтезируется пептид эндотелин-I, проявляющий выраженное бронхоконст-рикторное и вазоконстрикторное действие. Продукция эндотелина-I увеличивается при гипоксии, сердечной недостаточности, бактериемии, хирургических вмешательствах.

Эйкозаноиды, образующиеся при распаде арахидоновой кислоты, оказывают расслабляющее (простагландин Е) и констрикторное (лейкотриены, ПГ F2α, ТгА2) действие на гладкую мускулатуру, однако суммарно они проявляют бронхоконстрикторный эффект. Кроме того, эйкозаноиды регулируют агрегацию тромбоцитов (стимуляция – ТгА2, угнетение – ПГ I2), повышают проницаемость сосудистой, стенки, вызывают ее дилатацию, усиливают секрецию слизистой, активируют хемотаксис, ингибируют активность натуральных киллеров (липоксин), регулируют высвобождение медиаторов тучной клетки.

Под влиянием метаболитов арахидоновой кислоты возникает дисбаланс адренорецепторов с преобладанием активности α-рецепции над β-рецепцией. В гладкомышечных клетках бронхов снижается содержание цАМФ, замедляется элиминация ионов Са2+ из клеточной цитоплазмы, что и поддерживает бронхоконстрикцию. Ионы Са2+ активируют фосфолипазу А2, определяющую метаболизм арахидоновой кислоты. Формируется «порочный круг», поддерживающий бронхоконстрикцию.

Б. Рестриктивные нарушения связаны с пульмональными и экстрапульмональными расстройствами. Эти процессы, как правило, не затрагивают дыхательные пути и, соответственно, не влияют на аэродинамические процессы в них.

Уменьшение воздушного альвеолярного пространства и ограничение растяжимости легких может быть следствием гемоторакса и пневмоторакса, экссудата в плевральной полости, плевральных шварт, пневмофиброза, ателектаза, обширной пневмонии, кисты легкого, тугоподвижности костно-суставного аппарата грудной клетки или ее деформации (кифосколиоз, болезнь Бехтерева).

Основой рестриктивных нарушений является повреждение белков интерстиция под действием ферментов (эластаза, коллагеназа и другие). В состав интерстиция входят коллаген (60-70%), эластин (25-30%), гликозаминогликаны (1%), фибронектин (0,5%). Фибриллярные белки обеспечивают стабильность каркаса легких, его эластичность и растяжимость, создают оптимальные условия для выполнения основной газообменной функции. Структурные изменения белков интерстиция проявляются снижением растяжимости легочной паренхимы и повышением эластического сопротивления легочной ткани. При развитии эмфиземы нарушается равновесие синтеза и распада эластина, так как имеющийся избыток протеаз не уравновешивается ингибиторами протеолитических ферментов. Наибольшее значение имеет дефицит α1-антитрипсина.

Сопротивление, которое приходится преодолевать дыхательным мышцам во время вдоха, может быть эластическим и не эластическим. Эластическая сила легких направлена на сокращение объема легких. Это величина, обратная растяжимости. Примерно 2/3 эластической силы легких зависит от поверхностного натяжения стенок альвеол. Эластическая сила легких численно равна транспульмональному давлению. На вдохе транспульмональное давление увеличивается, и растет объем легких. В зависимости от фазы дыхания имеются определенные колебания внутриплеврального давления:

9) конец спокойного выдоха – 2-5 см вод.ст.

10) конец спокойного вдоха – 4-8 см вод.ст.

11) высота максимального вдоха – 20 см вод.ст.

Растяжимость легких (податливость легких, легочный комплайнс) – величина, характеризующая изменения объема легких на единицу транспульмонального давления. Растяжимость – величина, обратно пропорциональная эластичности. Основным фактором, определяющим предел максимального вдоха, является растяжимость. По мере углубления вдоха растяжимость легких прогрессивно уменьшается, а эластическое сопротивление становится наибольшим. Поэтому главным фактором, определяющим предел максимального выдоха, является эластическое сопротивление легких.

Отклонение транспульмонального давления на 1 см вод.ст. проявляется изменением объема легких на 150-350 мл. Работа по преодолению эластического сопротивления пропорциональна дыхательному объему, то есть растяжимость легких на вдохе тем больше, чем большая работа при этом совершается. Затруднения расправления легочной ткани определяют степень гиповентиляционных нарушений.

Различают статический и динамический легочный комплайнс. Статический комплайнс позволяет оценить эластическое сопротивление легочной ткани. Динамический комплайнс определяет также неравномерность изменения растяжимости и бронхиального сопротивления в отдельных зонах легких. Оба типа растяжимости характеризуются отношением объем/давление. Разница между ними существует из-за отсутствия соответствия регионарной растяжимости ткани легкого и скорости наполнения отдельных легочных зон в связи с различиями аэродинамического и тканевого вязкостного сопротивления.

Статическая легочная растяжимость (статический комплайнс) измеряется при задержке дыхания, когда ток воздуха прекращен, и происходит выравнивание регионарных различий эластичности легких. Оценку растяжимости проводят с помощью внутрипище-водного зонда путем измерения внутрипищеводного давления, которое соответствует внутриплевральному давлению. Величину растяжимости вычисляют как отношение разности легочных объемов на высоте вдоха и выдоха к разности транспульмонального давления в эти же моменты. Нормальные значения статического комплайнса в среднем составляют у мужчин 200, у женщин 170 мл/см вод.ст.

Динамическую легочную растяжимость (динамический комплайнс) оценивают без перекрытия воздушного потока при частоте дыхания 20 и 60 в минуту. Динамический комплайнс обратно пропорционален частоте дыхания, т.е. с увеличением частоты дыхания комплайнс уменьшается, причем в большей степени там, где более значительны нарушения распределения газов в легких. Чем больше неравномерность механических свойств легких, тем меньше динамический комплайнс, и по мере учащения дыхания снижение нарастает. У здоровых людей при высокой частоте дыхания динамический комплайнс снижается на 20%. Более выраженные отклонения свидетельствуют о неоднородности механических свойств легких.

Величину динамической растяжимости легочной ткани рассчитывают как отношение объема одного дыхательного цикла в конце вдоха и в конце выдоха, то есть в моменты, когда в воздухоносных путях нет потока, и транспульмональное давление равно его эластической составляющей.

В физиологических условиях существенной разницы показателей статической и динамической растяжимости не определяется. Величина комплайнса зависит от объема и направления предшествующих изменений и от гомогенности лёгкого. Величина растяжимости определяется:

12) Состоянием системы сурфактанта;

13) Упругими свойствами стенок альвеол;

14) Тонусом гладкой мускулатуры воздухоносных путей (гладкие мышцы иннервируются симпатической (расслабление) и парасимпатической (сокращение) нервной системой.

Растяжимость легких резко уменьшается (более 50%) при увеличении кровенаполнения легких, интерстициальном отеке, воспалении, недостатке сурфактанта.

При эмфиземе легких статический комплайнс повышается. В далеко зашедших стадиях процесса даже при максимальном вдохе не удается достичь предела функциональной растяжимости легких. Увеличению грудной клетки в этом случае уже не препятствует эластическая обратная тяга легких, что, в конечном счете, приводит к формированию бочкообразной грудной клетки. Уменьшение растяжимости легочной ткани является типичным симптомом фиброза легких. Для фиброзных изменений легочной ткани характерно уменьшение растяжимости легких и, следовательно, ограничение ОЕЛ и ЖЕЛ. Однако полного спадения легких не наблюдается из-за сниженной растяжимости легочной ткани. По сравнению с нормальными абсолютными величинами ООЛ относительно возрастает, то есть повышается показатель ООЛ/ОЕЛ.

Потеря эластических свойств легочной ткани происходит при разрушении эластических волокон под действием многих факторов (токсины микробов, ксенобиотики, табачный дым, нарушения питания, пожилой и старческий возраст), активирующих протеолитические ферменты. Эластические свойства могут восстанавливаться в случае, если легкие не испытывают постоянного тормозного воз­действия табачного дыма, микробных токсинов и т.п.

Растяжимость и эластичность легких зависят также от тонуса альвеол и терминальных бронхиол. Снаружи альвеолы покрыты жидкой оболочкой, которая по принципу "мыльного пузыря" обусловливает их нестабильность. Однако спадению альвеол препятствует покрытие их изнутри сурфактантом (фосфолипид-протеин-полисахарид) и наличие межальвеолярных перегородок,

Сурфактантная система обеспечивает условия для нормальной функции альвеол. Она является составной частью аэрогематического барьера. Сурфактант вырабатывается пневмоцитами 2-го порядка, состоит из липидов (90%, из них 85% приходится на долю фосфолипидов), белков (5-10%), мукополисахаридов (2%), имеет период полураспада менее двух суток. Он образует тонкий слой на внутренней поверхности альвеол и, таким образом, обеспечивает снижение поверхностного натяжения альвеол. При уменьшении легочных объемов сурфактант предупреждает коллабирование альвеол. На высоте выдоха объем легких минимальный, поверхностное натяжение благодаря выстилке ослаблено. Поэтому для раскрытия альвеол требуется меньшее транспульмональное давление, чем в отсутствие сурфактанта. Сурфактант регулирует транспорт кислорода по градиенту концентрации и поддержание оптимального уровня фильтрационного давления в системе легочной микроциркуляции.

Продукция сурфактанта снижается при гиповентиляции легких, хронической гипоксии (нарушение бронхиальной проходимости, уменьшение дыхательной поверхности венозный застой в малом круге кровообращения, повышение рО2 во вдыхаемом воздухе, табачный дым, пыль, фторотан, использование аппарата искусственного кровообращения и др.).

Снижение растяжимости легочной ткани способствует повышению ригидности бронхиальных путей, и адекватного экспираторного закрытия дыхательных путей не происходит. Однако ЖЕЛ снижается из-за уменьшения растяжимости, что свидетельствует о рестриктивном характере поражения. Дыхание учащается, имеется некоторое укорочение времени вдоха в общей продолжительности дыхательного цикла.

Функциональная диагностика вентиляционных нарушений. Результатом обеих форм обструктивных вентиляционных нарушений является увеличение ООЛ (абсолютное или относительное), уменьшение емкостных параметров дыхания и особенно объема форсированного выдоха. Эти изменения объемов являются следствием повышения сопротивления дыхательных путей, усиливающегося на выдохе.

Рестриктивные изменения поддаются оценке функциональными методами, когда они охватывают по меньшей мере, сегмент легкого. При меньшем объеме повреждения обеспечивается полная компенсация. Субъективно в условиях покоя вентиляционные изменения ощущаются пациентами при выпадении, по меньшей мере, половины объема легочной ткани (за исключением острых ситуаций). При физической нагрузке даже незначительные рестриктивные изменения обусловливают появление чувства нехватки воздуха. На спирограмме определяется уменьшение ЖЕЛ, а соотношение объемных параметров остается неизмененным.

Для многих патологических процессов, особенно в легких, обязательным признаком является снижение ЖЕЛ:

заболевания легких (хронический бронхит, эмфизема, пневмосклероз, фиброз, бронхиальная астма, обширные ателектазы, опухоли легких, опухоли, сдавливающие легкие или дыхательные пути, пневмо-, гемо-, гидроторакс, нейрофибромы и другие экстраплевральные опухоли;

патология опорно-двигательного аппарата и нарушения нервно-мышечной передачи, при которых отсутствует возможность осуществить полноценный вдох и выдох (травмы грудной клетки, миастения, полиневрит, полиомиелит, опухоли мозга, лекарственные препараты, угнетающие мышечную активность);

патологические процессы в брюшной полости, захватывающие диафрагму (перитонит, панкреатит, острая атония желудка);

болевой синдром в послеоперационном периоде после полостных операций ведет к уменьшению ЖЕЛ до 50-75%. Имеется прямая зависимость изменений ЖЕЛ от болевых ощущений, особенно в животе. В клинике для устранения этих нежелательных явлений иногда используют длительную перидуральную анестезию.

ЖЕЛ меняется в зависимости от положения тела: в положении стоя она в среднем на 5-10% больше, чем сидя или лежа. Это связано с изменением общего кровенаполнения легких при перемене положения тела.

Гиперреактивность бронхов выявляют при ингаляции растворов аэрозолей, содержащих бронхоконстрикторные вещества в возрастающей концентрации (ацетилхолин, гистамин и т.п.). Концентрацию препарата, при которой развивается реакция бронхов, обозначают как пороговую. При скрининговых исследованиях ограничиваются ингаляцией препаратов определенных концентраций, что позволяет выделить группу пациентов с гиперреактивностью бронхов.

Достоверным показателем гиперреактивности является снижение объема форсированного выдоха на 15% и более по сравнению с исходным уровнем.

Для обструктивных поражений диагностически достоверным является определение объема выдоха и ЖЕЛ при максимальном форсированном выдохе. Показатель форсированной ЖЕЛ по сравнению с ЖЕЛ меняется более существенно. Величину форсированной ЖЕЛ нельзя интерпретировать как показатель рестриктивных изменений.

Пневмотахография позволяет определять скорость и объем выдыхаемого воздуха при максимальном форсированном выдохе (кривые объем/поток). Она имеет значение при диагностике начальных изменений в нижних отделах бронхиального дерева. Математическое описание кривых объем/поток проводят в сравнении с нормативными величинами. Достоверность этих параметров ограничена вариационными коэффициентами (10-40%). Например, исследование большой популяции с применением пневмотахографии позволило статистически достоверно определить параметры изменений у курящих и некурящих. Однако при обследовании каждого пациента с использованием этого метода не всегда удается четко выявить имеющиеся нарушения.

Для оценки бронхиального сопротивления используют метод общей плетизмографии. Испытуемый во время обследования находится в замкнутой камере плетизмографа и дышит через пневмотахометрическую трубку. Измерения внутрикамерного давления соответствуют колебаниям альвеолярного давления на протяжении дыхательного цикла. Интегрированная кривая отражает зависимость между изменениями транспульмонального давления и объема дыхания. Изменения наклона кривой отражают свойства растяжимости легочной ткани. В зависимости от глубины и частоты изменяются соотношения фаз дыхания, которые определяются в виде S-образных петель в конце фаз вдоха и выдоха.

Остаточный объем легких может увеличиваться при любых вентиляционных нарушениях обструктивного типа. Эти изменения могут быть абсолютными (ООЛ/норм. ООЛ) и относительными (ООЛ/ОЕЛ). При фиброзе легких на фоне нормальных абсолютных значений в результате уменьшения ОЕЛ определяется относительное увеличение ООЛ, даже в случаях без эмфиземы. ООЛ определяют методом смешивания газов, который основан на принципе разведения индикаторного газа (гелий) после подключения испытуемого к замкнутой системе.

II. Нарушение регуляции дыхания. Функцияаппарата внешнего дыхания зависит от состояния системы регуляции вентиляции, транспортной функции крови, биохимических процессов и газообмена в тканях.

Регуляция дыхания. Центральный регулирующий дыхание механизм у человека представляет собой функциональную совокупность нервных структур, расположенных на разных уровнях ЦНС: в спинном и продолговатом мозге, варолиевом мосте, буграх четверохолмия, гипоталамусе, коре больших полушарий. В то же время принято считать, что сам дыхательный центр находится в продолговатом мозге. Современные представления о механизмах регуляции вентиляции основываются на трехкомпонентной теории дыхательного цикла (1. инспираторная; 2. постинспираторная; 3. экспираторная активности) и соответствующей каждому из трех компонентов нейронному пулу:

1. Генератора инспираторной активности.

2. Пула тормозных нейронов с постинспираторной активностью;

3. Генератора экспираторной активности.

Модель механизма регуляции дыхания включает в себя влияние с центральных и периферических хеморецепторов, механорецепторов трахеобронхиального дерева (рефлекс Геринга-Брейера), влияния из вышележащих структур центральной нервной системы.

Активность дыхательного центра определяет адекватный по объему и ритму процесс вентиляции. Дыхательный ритмогенез обеспечивается залповыми разрядами нейронов структур дыхательного центра. Ритмическая смена вдоха выдохом и выдоха вдохом (автоматия дыхательного центра) определяется пейсмекерными свойствами бульбарных респираторных нейронов и непрерывным потоком афферентной импульсации с рецепторов дыхательной и сердечно-сосудистой систем: аортальных (периферических) и «центральных» (бульбарных) хеморецепторов, механорецепторов трахеобронхиального дерева, локализованных в дыхательных путях и легких, проприорецепторов дыхательных мышц, рефлексогенных зон сердечно-сосудистой системы, опорно-двигательного аппарата.

Активация инспираторных нейронов происходит под влиянием хеморецепторной импульсации и прекращается под влиянием тормозных влияний, исходящих от других групп дыхательных нейронов и сигналов, поступающих от рецепторов растяжения легких. Вдох заканчивается, и наступает пассивный или активный выдох.

Изменения газового состава крови (раО2, раСО2, pH) влияют на активность дыхательного центра через возбуждение хеморецепторов. Хеморецепторы каротидного тела реагируют на снижение рН, раСО2 и раО2. Это единственный механизм, обеспечивающий увеличение вентиляции при гипоксемии. Афферентная импульсация включается в этой зоне при снижении раО2 с 95 до 70 мм рт.ст. и значимо возрастает по мере дальнейшего падения раО2 в диапазоне от 70 до 30 мм рт.ст. Влияния отклонений раО2 по мощности уступают влиянию отклонений раСО2, так как в этом случае присоединяется активация центральной хеморецепции. При небольшой гиперкапнии минутный объем дыхания (МОД) может достигать 60-70 л/мин. Снижение раО2 даже до критических величин (30 мм рт.ст.) проявляется увеличением МОД не более чем до 15-20 л/мин. Это объясняется тем, что возникающее при низком раО2 усиление легочной вентиляции приводит к избыточному вымыванию СО2, и наступающая гипокапния ограничивает стимулирующее влияние низкого раО2. При некоторых заболеваниях, сопровождающихся повреждением синокаротидной зоны (опухоли, коллагенозы, травмы), нарушается механизм стимуляции дыхательного центра при снижении раО2.

Хеморецепторы каротидных и аортальных телец (периферические рецепторы) и вентролатеральной зоны продолговатого мозга (центральные рецепторы) опосредованно реагируют на изменение раСО2: повышение раСО2 сопровождается увеличением концентрации водородных ионов [Н+] в крови и цереброспинальной жидкости. Функциональной особенностью этих рецепторов является медленная реакция только на изменение концентрации водородных ионов. При снижении рН цереброспинальной жидкости происходит активация центральных хеморецепторов и соответствующее рефлекторное увеличение вентиляции легких. Общепринято, что центральные хеморецепторы регулируют глубину вдоха (дыхательный объем), а периферические – частоту дыхания. Сдвиг рН в направлении ацидоза на 0,01 повышает активность дыхательного центра, в результате чего раСО2 изменяется примерно на 1 мм рт.ст. Повышение раСО2 сопровождается увеличением мозгового кровотока.

Хеморецепторы обеспечивают поддержание дыхательного ритмогенеза. Частота и глубина дыхания зависят от интенсивности хеморецепторных сигналов в дыхательный центр и эфферентной импульсации через мотонейроны шейного и грудного отделов спинного мозга к дыхательной мускулатуре. В разных условиях активирующие влияния обеспечивают такой уровень вентиляции легких, при котором сохраняется постоянный газовый состав артериальной крови. Это возможно благодаря непрерывной сигнализации с хеморецепторов о постоянстве или отклонениях раО2







Дата добавления: 2015-08-12; просмотров: 1736. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

СПИД: морально-этические проблемы Среди тысяч заболеваний совершенно особое, даже исключительное, место занимает ВИЧ-инфекция...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия