Студопедия — Нормальный закон распределения (закон Гаусса)
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Нормальный закон распределения (закон Гаусса)






Этот закон является одним из наиболее распространенных законов распределения погрешностей, что объясняется центральной предельной теоремой теории вероятностей.

Центральная предельная теорема ТВ - распределение случайных погрешностей будет близко к нормальному всякий раз, когда результаты наблюдения формируются под влиянием большого числа неравномерно действующих факторов, каждый из которых оказывает лишь незначительное действие по сравнению с суммарным действием всех остальных.

Закон Гаусса имеет следующее выражения:

 

MX - математическое ожидание, оно является центром группирования результатов наблюдения.

G - среднеквадратичное отклонение характеризует величину рассеивания результатов наблюдений, т.е. точность измерения.

Центральный момент первого порядка.

 

Сколько бы не измеряли все моменты располагаются около МХ при n®¥.

Центральный момент второго порядка.

ДХ – дисперсия

- характеризует величину рассеивания результатов наблюдения.

Дисперсия – математическое ожидание квадрата отклонения случайной величины от квадрата ее математического ожидания.

В практике неизвестно МХ, поэтому:

- смещенная характеристика поскольку ее математическое ожидание

- несмещенная характеристика дисперсии.

Так как среднее арифметическое вычисляется по результатам отдельных наблюдений, то является тоже случайной величиной и характеризуется своим эмпирическим средне квадратическим отклонением

Видно, что эмпирическое среднее квадратическое отклонение среднего арифметического значения в раз меньше эмпирического среднего квадратического отклонения, (т.е. точность среднего арифметического значения в раз выше точности единичного измерения). Поэтому на практике за результат измерения принимают , а не результат отдельного измерения, что позволяет уменьшить в раз случайную составляющую погрешности измерения.

Зная MX и G, можно с определенной вероятностью определить диапазон рассеивания результатов наблюдений D.

где z - коэффициент равный значению функции Лапласа.

 

68% - доверительная вероятность

В этом интервале лежат 68% всех размеров, среднеквадратическое отклонение является 68% или доверительным интервалом.

 

 


95% - в промышленности 99.73% - в научных исследованиях

Доверительный интервал, интервал в котором мы ожидаем размер.

Доверительная вероятность - вероятность того, что размеры деталей или результаты измерения окажется внутри доверительного интервала.

За оценку случайной погрешности результата измерений принимают доверительный интервал среднего арифметического.

Случайные погрешности, > 3G, считаются грубыми и исключаются из результата измерения.

При малом n используют коэффициент Стьюдента, где

При n®¥ распределение Стьюдента переходит в нормальное распределение, чем больше n, тем меньше коэф. Стьюдента, интервал с заданной вероятностью уменьшается

, P=, n=

 

Систематическая погрешность.

 

Суммирование погрешностей.

 

1. Систематические погрешности суммируются алгебраически:

2. Случайные погрешности суммируются квадратически.

 

При расчёте предельной погрешности измерения определяют числовое значение погрешности измерения от всех составляющих и производят суммирование:

,

где знаки "+" или "-" ставятся из условия, чтобы систематические и случайные погрешности суммировались по модулю.

Если в случайной погрешности известно среднее квадратическое отклонение, то

,

где К - показатель, указывающий доверительные границы для предельной случайной погрешности измерения (при К=1 р=0,65; при К=2 р=0,945; при К=3 р=0,9973).

Если результаты измерений зависят от большого числа разнообразных факторов, то

y = F(x1, x2, …..xn),

где xi - переменные функциональные параметры.

Каждый параметр может иметь отклонение Dxi (погрешность) от предписанного значения xi. Поскольку погрешность Dxi мала по сравнению с величиной xi, суммарная погрешность Dy функции y можно вычислять по формуле

где ¶y/¶xi - передаточное отношение (коэффициент влияния) параметра xi.

Формула (3.1) справедлива лишь для систематических погрешностей Dxi.

Для случайных погрешностей (когда отдельные составляющие не всегда принимают предельные значения) используются теоремы теории вероятностей о дисперсии, то есть

. (3.2)

Суммарная погрешность при наличии только случайных составляющих dxi погрешностей

,

где m - число попарно корреляционно связанных параметров;

ki и kj - коэффициенты относительного рассеяния, характеризующие степень отличия закона распределения погрешности данного параметра от нормального;

rij - коэффициент корреляции, существующий при наличии корреляционной связи между параметрами xi и xj.

При наличии и систематических и случайных составляющих погрешностей вычисляют доверительные границы суммарной погрешности:

Dyсум = Dy ± k×sy ,

где k - масштабный коэффициент интервала распределения, зависящий от закона распределения и принятой доверительной вероятности. Так, при доверительной вероятности Р = 0,95 для закона нормального распределения k = 2, а для закона Максвелла k = 3,6.

Пример. В результате измерений и последующего вычисления по формуле (3.1) получена суммарная систематическая погрешность результата измерения Dy =

-0,7 мкм, среднее квадратическое этого результата измерения, вычисленное по формуле (3.2) sy = 0,4 мкм. При доверительной вероятности Р =0,95 предел допускаемой погрешности dизм = +1 мкм. Тогда верхняя и нижняя доверительные границы погрешности

Dyсум в = -0,7 + 2×0,4 = +0,1 мкм; Dyсум н = -0,7 - 2×0,4 = -1,5 мкм.

Так как Dyсум н > dизм , выбранный метод и средство измерения не удовлетворяют требованиям точности. Следовательно, необходимо скомпенсировать систематическую составляющую погрешности, например, путём изготовления образца для настройки измерительного средства. Размер образца должен быть больше его начального размера на 0,7 мкм; тогда будет справедливо неравенство 0,8 < 1 мкм и проведённые измерения будут удовлетворять требованиям по точности.







Дата добавления: 2015-08-12; просмотров: 1575. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия