Студопедия — Показатель политропы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Показатель политропы

Кривая на термодинамических диаграммах, изображающая политропный процесс, называется «политропа». Для идеального газа уравнение политропы может быть записано в виде:

где р — давление, V — объем газа, n — «показатель политропы».

. Здесь — теплоёмкость газа в данном процессе, и — теплоемкости того же газа, соответственно, при постоянном давлении и объеме.

В зависимости от вида процесса, можно определить значение n:

· Изотермический процесс: , так как , значит, по закону Бойля — Мариотта , и уравнение политропы вынуждено выглядеть так: .

· Изобарный процесс: , так как , и уравнение политропы вынуждено выглядеть так: .

· Адиабатный процесс: (здесь — показатель адиабаты), это следует из уравнения Пуассона.

· Изохорный процесс: , так как , и в процессе , а из уравнения политропы следует, что , то есть, что , то есть , а это возможно, только если является бесконечным

· До сих пор рассматривались процессы, у которых имелись вполне определенные признаки: изохорный процесс осуществлял­ся при постоянном объеме; изобарный — при постоянном давле­нии; изотермический — при постоянной температуре; адиабат­ный— при отсутствии теплообмена между рабочим телом и внеш­ней средой. Наряду с этими процессами можно представить еще бесконечное множество процессов, у которых имеются другие постоянные признаки.

· Условились всякий процесс идеального газа, в котором удель­ная теплоемкость является постоянной величиной, называть политропным процессом, а линию процесса — политропой.

· Из определения политропного процесса следует, что основные термодинамические процессы — изохорный, изобарный, изотерми­ческий и адиабатный,— если они протекают при постоянной удель­ной теплоемкости, являются частными случаями политропного процесса. Итак, политропный процесс проходит при постоянной теплоемкости.

·

· Если теплоемкость зависит от температуры, то нужно найти среднюю теплоемкость, чтобы процесс стал политропным.

ПОЛИТРОПНЫЙ ПРОЦЕСС (политропический процесс) - обратимый термодинамич. процесс при пост. теплоёмкости системы. Линия, изображающая П. п. на термодинамич. диаграмме, наз. политропой. При П. п. кол-во подводимого тепла пропорционально вызываемому тем самым повышению темп-ры следовательно, где С - теплоёмкость при П. п. Для идеального газа внутр. энергия U пропорциональна темп-ре , так что. согласно первому началу термодинамики, С = где P - давление, V - объём, - теплоёмкость при пост. объёме. Интегрируя полученное ур-ние с учётом ур-ния состояния, находим ур-ние для политропы идеального газа: = const или = const, где - теплоёмкость при пост. давлении.

Изохорический или изохорный процесс — термодинамический процесс, который происходит при постоянном объёме. Для осуществления изохорного процесса в газе или жидкости достаточно нагревать (охлаждать) вещество в сосуде, который не изменяет своего объёма.

При изохорическом процессе давление идеального газа прямо пропорционально его температуре (см. Закон Шарля). В реальных газах закон Шарля не выполняется.

На графиках изображается линиями, которые называются изохоры. Для идеального газа они являются прямыми во всех диаграммах, которые связывают параметры: T (температура), V (объем) и P (давление).

 

Первый закон термодинамики в изопроцессах


1. В изохорном процессе (V=const). При изохорном процессе объем газа остается постоянным, поэтому газ не совершает работу. Изменение внутренней энергии газа происходит благодаря теплообмену с окружающими телами:

 

Здесь U1 и U2 – внутренние энергии газа в начальном и конечном состояниях. Внутренняя энергия идеального газа зависит только от температуры. При изохорном нагревании тепло поглощается газом Q > 0, и его внутренняя энергия увеличивается. При охлаждении тепло отдается внешним телам Q < 0

2. В изобарном процессе (P=const). При изобарном расширении газа подведенное к нему количество теплоты расходуется как на увеличение его внутренней энергии и на совершение работы газом:

 

При изобарном расширении Q > 0 – тепло поглощается газом, и газ совершает положительную работу. При изобарном сжатии Q < 0 – тепло отдается внешним телам. В этом случае A < 0. Температура газа при изобарном сжатии уменьшается, T2 < T1; внутренняя энергия убывает, ΔU < 0.

3. В изотермическом процессе (T=const). При изотермическом процессе температура газа не изменяется, следовательно, не изменяется и внутренняя энергия газа, ΔU = 0.

 

Количество теплоты Q, полученной газом в процессе изотермического расширения, превращается в работу над внешними телами. При изотермическом сжатии работа внешних сил, произведенная над газом, превращается в тепло, которое передается окружающим телам. Наряду с изохорным, изобарным и изотермическим процессами в термодинамике часто рассматриваются процессы, протекающие в отсутствие теплообмена с окружающими телами.

4. В адиабатном процессе (Q=0). При адиабатном процессе первый закон термодинамики выглядит:

 

То есть газ совершает работу за счет убыли его внутренней энергии. На плоскости (p, V) процесс адиабатического расширения (или сжатия) газа изображается кривой, которая называется адиабатой. При адиабатическом расширении газ совершает положительную работу (A > 0); поэтому его внутренняя энергия уменьшается (ΔU < 0). Это приводит к понижению температуры газа. Вследствие этого давление газа при адиабатическом расширении убывает быстрее, чем при изотермическом расширении.

В Формуле мы использовали:

— Изменение внутренней энергии

— Количество теплоты

— Работа внешних сил

— Работа совершаемая системой

— Объем газа

-Давление газа

5) Теплоёмкость тела (обычно обозначается латинской буквой C) — физическая величина, определяемая отношением бесконечно малогоколичества теплоты δQ, полученного телом, к соответствующему приращению его температуры δT[1]:

Единица измерения теплоёмкости в Международной системе единиц (СИ) — Дж/К.

Теплоёмкость тела (обозначается C) — физическая величина, определяющая отношение бесконечно малого количества теплоты ΔQ, полученного телом, к соответствующему приращению его температуры ΔT:

Единица измерения теплоёмкости в системе СИ — Дж/К.

Теплоемкость вещества — теплоемкость единицы массы данного вещества. Единицы измерения — Дж/(кг К).

Молярная теплоемкость — теплоемкость 1 моля данного вещества. Единицы измерения — Дж/(моль К).

Если же говорить про теплоемкость произвольной системы, то ее уместно формулировать в терминах термодинамических потенциалов — теплоемкость есть производная термодинамического потенциала Q по температуре:

Понятие теплоёмкости определено как для веществ в различных агрегатных состояниях (твёрдых тел, жидкостей, газов), так и для ансамблей частиц и квазичастиц (в физике металлов, например, говорят о теплоемкости электронного газа). Если речь идёт не о каком-либо теле, а о некотором веществе как таковом, то различают удельную теплоёмкость — теплоёмкость единицы массы этого вещества и молярную — теплоёмкость одного моля его

Виды теплоемкости Если ТС – однородное рабочее тело, то в расчетах применяются относительные теплоемкости:

- удельная теплоемкость – теплоемкость, отнесенная к 1 кг вещества с=С/m, Дж/кгК;

- молярная теплоемкость – теплоемкость, отнесенная с 1 молю вещества , Дж/мольК;

- объемная теплоемкость – теплоемкость, отнесенная к 1м3 вещества , Дж/м3К.

 

Теплоемкость – свойство материала поглощать определенное количество тепла при нагревании и выделять его при охлаждении.

Удельная теплоемкость – количество тепла, необходимое для нагревания единицы количества вещества на один градус.

Формула для расчёта удельной теплоёмкости (или табл.знач.):

,

где — удельная теплоёмкость,

— количество теплоты, полученное веществом при нагреве (или выделившееся при охлаждении),

— масса нагреваемого (охлаждающегося) вещества,

— разность конечной и начальной температур вещества.

В зависимости от единиц измерения количества вещества различают:

· массовую теплоемкость С, Дж / (кг К) - это количество теплоты, которое необходимо подвести к единице массы вещества, чтобы нагреть его на единицу температуры;

· объемную теплоемкость С’, Дж / (м3 К) - это количество теплоты, которое необходимо подвести к единице объёма вещества, чтобы нагреть его на единицу температуры;

· мольную теплоемкость СМ, Дж / (кмоль К) - это количество теплоты, которое необходимо подвести к 1 молю вещества, чтобы нагреть его на единицу температуры

5)Для идеального газа справедливо соотношение Майера:

,

где — универсальная газовая постоянная, — молярная теплоёмкость при постоянном давлении, — молярная теплоёмкость при постоянном объёме.

Уравнение Майера вытекает из первого начала термодинамики, примененного к изобарному процессу в идеальном газе:

,

в рассматриваемом случае:

.

Очевидно, уравнение Майера показывает, что различие теплоёмкостей газа равно работе, совершаемой одним молем идеального газа при изменении его температуры на 1 K, и разъясняет смысл универсальной газовой постоянной — механический эквивалент теплоты.

МАЙЕРА УРАВНЕНИЕ - ур-ние, устанавливающее связь между теплоёмкостями при пост, давлении Cp и постоянном объёме СV 1кмоля идеального газа: где R -газовая постоянная.Впервые было получено Ю. P. Майером (J. R. Mayer) в 1842 и ещё до работ Дж. П. Джоуля (J. P. Joule) использовано им для количеств, определениямеханического эквивалента теплоты. Для произвольной массы т (кг) вещества в состоянииидеального газа M. у. записывается в виде: , где - молекулярная масса газа. M. у. можно получить из общего соотношения (см. Термодинамика),если учесть, что для идеального газа справедливо Клапейрона уравнение.

7) Уравнение Клапейрона-Менделеева. Связь между числом молей газа, его температурой, объемом и давлением.

Газы нередко бывают реагентами и продуктами в химических реакциях. Не всегда удается заставить их реагировать между собой при нормальных условиях. Поэтому нужно научиться определять число молей газов в условиях, отличных от нормальных.

Для этого используют уравнение состояния идеального газа (его также называют уравнением Клапейрона-Менделеева):

PV = nRT

где n – число молей газа;

P – давление газа (например, в атм;

V – объем газа (в литрах);

T – температура газа (в кельвинах);

R – газовая постоянная (0,0821 л·атм/моль·K).

Уравнение Клапейрона - Менделеева (уравнение состояния идеального газа) Это уравнение, связывающее макропараметры между собой. Физика, Билеты по физике за весь школьный курс, Билеты Это уравнение называют уравнением состояния идеального газа (уравнение Менделеева-Клапейрона).
Уравнение состояния идеального газа (иногда уравнение Клапейрона или уравнениеМенделеева — Клапейрона) — формула, устанавливающая зависимость между давлением,молярным объёмом и абсолютной температурой идеального газа. Уравнение имеет вид:

,

где

· — давление,

· — молярный объём,

· — универсальная газовая постоянная

· — абсолютная температура, К.

Так как , где — количество вещества, а , где — масса, — молярная масса, уравнение состояния можно записать:

где - концентрация атомов, - постоянная Больцмана.

Эта форма записи носит имя уравнения (закона) Менделеева — Клапейрона.

Уравнение, выведенное Клапейроном, содержало некую неуниверсальную газовую постоянную , значение которой необходимо было измерять для каждого газа:

Менделеев же обнаружил, что прямо пропорциональна , коэффициент пропорциональности он назвал универсальной газовой постоянной.

 

 




<== предыдущая лекция | следующая лекция ==>
І. РОЗГЛЯД ТЕОРЕТИЧНОГО МАТЕРІАЛУ 4 страница | Перенаправление файлов Протоколы среднего уровня

Дата добавления: 2015-08-12; просмотров: 11145. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия