Студопедия — ПОРЯДОК ВЫПОЛНЕНИЯ ЭКСПЕРИМЕНТА
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПОРЯДОК ВЫПОЛНЕНИЯ ЭКСПЕРИМЕНТА






1. Включите источник света, поверните алидаду гониометра так, чтобы оптическая ось зрительной трубы совпадала с осью коллиматора. При этом в поле зрения окуляра появится изображение входной щели коллиматора.

Проверьте и при необходимости произведите фокусировку коллиматора и зрительной трубы в следующей последовательности:

2. Сфокусируйте на оптическом стенде с помощью автоколлиматора трубу на «бесконечность». При отсутствии автоколлиматора можно визуально сфокусировать трубу на удаленный предмет в коридоре или за окном.

3. Установите алидаду гониометра соосно с оптической осью коллиматора. Вращением фокусирующей подвижки коллиматора добейтесь резкого изображения щели.

4. Установите исследуемый объект на предметный столик и проверьте наличие дифрагировавшего или отклоненного излучения.

5. Определить преломляющий угол А призмы (в работе используется призма АР–90, у которой в качестве рабочих выбираются две грани под углом , как показано на рис. 3). На предметный столик поставить призму так, чтобы биссектриса преломляющего угла призмы примерно совпадала с осью освещенного коллиматора. В этом случае боковые грани призмы работают как зеркала. Сначала невооруженным глазом, а затем с помощью окуляра поймать изображение входной щели освещенного коллиматора по направлению отраженных от боковых граней призмы лучей. Поворачивая окуляр, совместить его нить с изображением щели сначала справа от оптической оси коллиматора, а затем слева. При этом снять отсчеты по лимбу и нониусу гониометра . При таком положении призмы искомый угол А равен: . Если при перемещении из положения справа в положение слева от оптической оси коллиматора окуляр проходит через ноль лимба, тогда Преломляющий угол призмы определить не менее трех раз и найти среднее значение.

6. Измерить углы наименьшего отклонения для различных длин волн спектра лампы. Прежде всего, необходимо увидеть в окуляр линейчатый спектр лампы. Для этого элементы установки нужно установить в следующем порядке: поместить призму на предметном столике так, как изображено на рис.2 (при этом коллиматор–объектив и окуляр образуют угол примерно равный 21–25 градусов). Слегка поворачивая столик с призмой и окуляр вблизи данного положения, нужно добиться четкого изображения линий спектра. Далее следует повернуть столик с призмой в одном направлении и проследить за движением спектральных линий. При некотором определенном угле падения луча на призму наблюдаемая спектральная линия останавливается в поле зрения окуляра, а затем начинает двигаться в обратном направлении. Положение спектральной линии в момент остановки соответствует углу наименьшего отклонения луча . Совместив отсчетную нить окуляра с линией спектра в положении минимального отклонения, снять отсчет по лимбу и нониусу. Далее чтобы измерить угловую координату лучей нужно снять призму со столика и совместить окуляр с оптической осью коллиматора, совместить отсчетную нить с изображением входной щели и снять отсчет . Тогда угол наименьшего отклонения для любой спектральной линии: (см. рис. 1). Результаты измерений занести в таблицу 1.

 
 

Рис. 3. Положение гониометра.

 

Таблица 1. Экспериментальные данные.

Цвет линии Длина волны λ, нм Преломляющий угол призмы А, градусы Наименьший угол отклонения спектральной линии , градусы Показатель преломления n
         

Примечание! Таблица должна содержать не менее 10 строк.







Дата добавления: 2015-08-12; просмотров: 359. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Условия, необходимые для появления жизни История жизни и история Земли неотделимы друг от друга, так как именно в процессах развития нашей планеты как космического тела закладывались определенные физические и химические условия, необходимые для появления и развития жизни...

Методы прогнозирования национальной экономики, их особенности, классификация В настоящее время по оценке специалистов насчитывается свыше 150 различных методов прогнозирования, но на практике, в качестве основных используется около 20 методов...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия