Студопедия — ИСТОЧНИКИ СВЕТА
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ИСТОЧНИКИ СВЕТА






ИСКУССТВЕННОЕ ОСВЕЩЕНИЕ

 

Методические указания к лабораторной работе по курсу

«Безопасность жизнедеятельности»

 

 

Иваново – 2009

ЦЕЛЬ РАБОТЫ

Изучение нормируемых качественных и коли­чественных характеристик освещения. Оценка степени влияния отделки интерьера на коэффициент использования (КПД) осветительной установки. Демонстрация преимуществ и недостатков применяемых в настоящее время источников света.

 

ОБЩИЕ СВЕДЕНИЯ

Сохранность зрения человека, состояние его цен­тральной нервной системы, производительность, ка­чество труда и безопасность в производственных условиях в значительной мере зависят от условий освещения.

По конструктивному исполнению искусствен­ное освещение может быть двух систем: общее — осуществляемое расположением светильников на потолке помещения; комбинированное — совокуп­ность общего освещения и местных светильников, расположенных непосредственно на рабочих мес­тах. Применение одного местного освещения внутри зданий не допускается.

 

ИСТОЧНИКИ СВЕТА

В качестве источников света традиционно применяются электрические лампы накаливания и газоразрядные лампы. Однако в последние несколько лет, благодаря развитию технологии, стали активно развиваться светодиодные источники света.

Лампы накаливания относятся к источникам света теплового излучения. Они удобны в эксплуатации, легко монтируются, дешевы, работают в широком диапазоне температур окружающей среды, однако об­ладают низкой световой отдачей (отношением создаваемого лампой светового потока к потребляемой электрической мощности) 10...20 лм/Вт, тогда как при идеальных условиях 1 Вт соответствует 683 лм, сравнительно небольшим сроком службы до 2500 ч; их спектральный состав сильно отличается от есте­ственного света, нарушается правильная цветопе­редача. В промышленности они находят применение для организации местного освещения.

Наибольшее применение в промышленности находят газоразрядные лампы низкого и высокого давления - приборы, в которых излучение света возникает в результате электриче­ского разряда в атмосфере паров металлов (ртуть, натрий), галогенов (йод, фтор) и инертных газов, а также явления люминесценции. Газоразрядные лампы низкого давления, называемые люминесцентными, с одержат стеклянную трубку внутренняя поверхность которой покрыта люминофором, наполненную дозированным количеством ртути (30 - 80 мг) и смесью инертных газов под давлением около 400 Па. На противоположных концах внутри трубки размещаются электроды, между которыми, при включении лампы в сеть, возникает газовый разряд, сопровождающийся излучением преимущественно в ультрафиолетовой области спектра. Это излучение, в свою очередь, преобразуется люминофором в видимое световое излучение. В зависимости от состава люминофора люминесцентные лампы обладают различной цветностью.

В последние годы появились газоразрядные лампы низкого давления со встроенным высокочастотным преобразователем. Газовый разряд в таких лампах (называемый вихревым) возбуждается на высоких частотах (десятки кГц) за счет чего обеспечивается очень высокая светоотдача.

К газоразрядным лампам высокого давления (0,03 - 0,08 МПа) относят дуговые ртутные лампы (ДРЛ). В спектре излучения этих ламп преобладают составляющие зелено-голубой области спектра.

Основными достоинствами газоразрядных ламп является их долговечность (свыше 10000 часов), экономичность, малая себестоимость изготовления, благоприятный спектр излучения, обеспечивающий высокое качество цветопередачи, низкая температура поверхности. Светоотдача этих ламп колеблется в пределах от 30 до 105 лм/Вт, что в несколько раз превышает светоотдачу ламп накаливания.

К недостаткам газоразрядных ламп следует отнести наличие вредных для биосфе­ры и человека паров ртути и натрия при их разгер­метизации, повышенный уровень ультрафиолетового излучения, радиопомехи, сложную и дорогостоя­щую пускорегулирующую арматуру, длительный период выхода отдельных типов ламп на номинальный режим (для ламп ДРЛ 3...5 мин), не­возможность быстрого вторичного включения лам­пы при кратковременном отключении питающего напряжения.

Основным и существенным недостатком всех га­зоразрядных ламп является пульсация светового потока, т. е. непостоянство во времени, излучение света, вызванное переменным током в питающей сети и малой инерционностью процессов, сопрово­ждающих работу этих ламп.

На рисунке 1 изображена синусоида изменения напряжения в сети U в В и примерная осциллограм­ма светового потока лампы Фл в лм и создаваемой им освещенности Е в лк на рабочем месте.

Рисунок 1. Зависимость светового потока от напряжения питания

 

В момент перехода переменного напряжения че­рез ноль освещенность, создаваемая лампой, достигает минимального значения Еmin, при достижении напряжения максимального значения осве­щенность принимает значения Еmax. Пульсация освещенности, не всегда заметная глазом, приводит к быстрому утомлению зрения, вызывает в некото­рых случаях покраснение глаз, головную боль.

Глубина пульсации оценивается коэффициен­том пульсации

(1)

где Еmax, Еmin, Еср - соответственно максимальная, минимальная и средняя освещенность, создаваемая лампой за период колебаний.

Пульсации освещенности на рабочей поверхности не только утомляют зрение, но и могут вызывать неадекватное восприятие наблюдаемого объекта за счет появления стробоскопического эффекта. Стробоскопический эффект - кажущееся изменение или прекращение движения объекта, освещаемого светом, периодически изменяющимся с определенной частотой. Например, если вращающийся белый диск с черным сектором освещать пульсирующим световым потоком (вспышками), то сектор будет казаться: неподвижным при частоте fВСП = fВРАЩ, медленно вращающимся в обратную сторону при f ВСП > f ВРАЩ, медленно вращающимся в ту же сторону при f ВСП < f ВРАЩ, где f ВСП и f ВРАЩ соответственно частоты вспышек и вращения диска. Пульсации освещенности на вращающихся объектах могут вызывать видимость их неподвижности, провоцируя ошибочные действия операторов, что в свою очередь, может явиться причиной травматизма.

Сглаживание пульсации достигается применением нескольких рядом работающих ламп со сдвигом фаз питающего напряжения (подключением ламп к разным фазам трехфазной сети) или существенным повыше­нием частоты переменного тока (f > 1000 Гц) при помощи специальных устройств питания.

Самыми перспективными источниками света на сегодняшний день являются светодиодные лампы и матрицы. Светодиод – полупроводниковый прибор, способный излучать электромагнитные колебания при прохождении через него электрического тока в прямом направлении. Достаточно длительное время с момента своего появления светодиоды служили лишь как маломощные индикаторы, заменяя собой сигнальные лампочки в электронных устройствах. С развитием технологии производства светодиоды стали конкурировать с лампами накаливания и люминесцентными лампами. Светодиоды гораздо эффективнее превращают электроэнергию в свет, чем другие его источники. Светоотдача светодиодов в 10 раз больше, чем светоотдача ламп накаливания. Светодиоды всегда излучают в узком спектральном диапазоне, то есть их свет имеет ярко выраженную окраску. Для получения белого цвета (светового излучения, в котором представлены все цвета из видимого спектра) раньше использовали комбинацию нескольких светодиодов с разным цветом свечения (красным, зеленым, синим). В настоящее время для получения белого света на поверхность кристалла с длинной волны, соответствующей синему цвету наносят специальный люминофор, который поглощает синий цвет и сам начинает излучать свет во всем видимом спектре. Оттенки белого можно варьировать, вплоть до полного сходства с солнечным светом. Так же светодиоды могут излучать свет в инфракрасном и ультрафиолетовом диапазоне.

Достоинствами светодиодов являются высокая экономичность, виброустойчивость, большой срок службы (до 100 000 часов и более), механическая надежность и прочность, очень низкая инерционность, способность без ущерба работать в импульсном режиме, низкая теплоотдача. Кристалл полупроводника, заключенный в корпус светодиода, имеет микроскопические размеры. Поэтому светодиод можно рассматривать как точечный источник света. Корпус его можно сделать самым миниатюрным. Обычно пластиковый корпус представляет собой устройство фокусировки света в заданном телесном угле, препятствуя светопотерям в других направлениях. Размеры корпуса определяют размер источника света. Благодаря этому светодиоды могут размещаться внутри любого устройства благодаря своим незначительным размерам. Они могут быть легко установлены в любом, нужном положении с помощью специальных направляющих. Еще одной отличительной особенностью светодиодов является жестко заданный угол половинной яркости (угол между направлениями, на которых сила света в два раза ниже, чем на оси), он обычно лежит в пределах от 30 до 120 градусов, и благодаря ему светодиодные источники света могут быть как узконаправленными, так и широкоугольными.

Недостатком светодиодов в первую очередь является их довольно высокая стоимость (которая, однако в последнее время существенно сокращается). Кроме дороговизны светодиодов, их существенным недостатком являются повышенные требования к источнику питания (светодиоды должны питаться постоянным током, а кроме того по причине очень большой нелинейности величины излучаемого светового потока от напряжения питания и малой инерционности их следует питать от источник с минимальными колебаниями величины выходного напряжения). Еще одним недостатком светодиодов является тот факт, что даже при незначительном превышении температуры кристалла установленных норм, срок службы светодиода резко сокращается.

 

 







Дата добавления: 2015-08-12; просмотров: 443. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Классификация и основные элементы конструкций теплового оборудования Многообразие способов тепловой обработки продуктов предопределяет широкую номенклатуру тепловых аппаратов...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия