Студопедия — Организация эукариотической клетки.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Организация эукариотической клетки.






Эндоплазматическая сеть (ЭПС) - это система цистерн и каналов, «стенка» которых образована мембраной. ЭПС пронизывает цитоплазму в разных направлениях и делит ее на изолированные отсеки (компартменты). Благодаря этому в клетке осуществляются специфические биохимические реакции. Эндоплазматическая сеть выполняет также синтетическую и транспортную функции. Если на поверхности эндоплазматической мембраны есть рибосомы, ее называют шероховатой, если рибосом нет – гладкой. На рибосомах осуществляется синтез белков. Белки проходят через мембрану в цистерны ЭПС, где приобретают третичную структуру и транспортируются по каналам к месту потребления. На гладкой ЭПС происходит синтез липидов, стероидов. ЭПС — основное место биосинтеза и построения мембран цитоплазмы. Отчленяющиеся от нее пузырьки представляют исходный материал для других одномембранных органелл: аппарата Гольджи, лизосом, вакуолей.

Аппарат Гольджи - органелла, обнаруженная в клетке итальянским исследователем Камилло Гольджи в 1898 г.

Аппарат Гольджи обычно расположен около клеточного ядра. Наиболее крупные аппараты Гольджи находятся в секреторных клетках.

Основным элементом органеллы является мембрана, образующая уплощенные цистерны - диски. Они располагаются друг над другом. Каждая стопка Гольджи (у растений называемая диктиосомой) содержит от четырех до шести цистерн. Края цистерн переходят в трубочки, от которых отчленяются пузырьки (пузырьки Гольджи), транспортирующие заключенное в них вещество к месту его потребления. Отчленение пузырьков Гольджи происходит на одном из полюсов аппарата. Со временем это приводит к исчезновению цистерны. На противоположном полюсе аппарата осуществляется сборка новых дисков-цистерн. Они формируются из пузырьков, отпочковывающихся от гладкой эндоплазматической сети. Содержимое этих пузырьков, «унаследованное» от ЭПС, становится содержимым аппарата Гольджи, в котором подвергается дальнейшей переработке.

Функции аппарата Гольджи разнообразны: секреторная, синтетическая, строительная, накопительная. Одна из важнейших функций - секреторная. В цистернах аппарата Гольджи происходит синтез сложных углеводов (полисахаридов), осуществляется их взаимосвязь с белками, приводящая к образованию мукопротеидов. С помощью пузырьков Гольджи готовые секреты выводятся за пределы клетки. Аппарат Гольджи образует гликопротеин (муцин), представляющий важную составную часть слизи; участвует в секреции воска, растительного клея. Иногда аппарат Гольджи принимает участие в транспорте липидов.

В аппарате Гольджи происходит укрупнение белковых молекул. Он участвует в построении плазматической мембраны и мембран вакуолей. В нем формируются лизосомы.

Лизосомы (от греч. лизис – разрушение, расщепление, сома – тело) — пузырьки больших или меньших размеров, заполненные гидролитическими ферментами (протеазами, нуклеазами, липазами и другими). Лизосомы в клетках не представляют собой самостоятельных структур. Они образуются за счет активности эндоплазматической сети и аппарата Гольджи и напоминают секреторные вакуоли. Основная функция лизосом — внутриклеточное расщепление и переваривание веществ, поступивших в клетку или находящихся в ней, и удаление из клетки.

Выделяют первичные и вторичные лизосомы (пищеварительные вакуоли, аутолизосомы, остаточные тельца).

Первичные лизосомы представляют собой пузырьки, ограниченные от цитоплазмы одинарной мембраной. Ферменты, находящиеся в лизосомах, синтезируются на шероховатой эндоплазматической сети и транспортируются к аппарату Гольджи. В цистернах аппарата Гольджи вещества подвергаются дальнейшим превращениям. Пузырьки с набором ферментов, отделившиеся от цистерн аппарата Гольджи, называют первичными лизосомами. Они участвуют во внутриклеточном пищеварении и иногда секреции ферментов, выделяющихся из клетки наружу. Это происходит, например, при замене хряща костной тканью в процессе развития, при перестройке костной ткани в ответ на повреждение. Секретируя гидролитические ферменты, остеокласты (клетки-разрушители) обеспечивают разрушение минеральной основы и органического остова матрикса кости. Накапливающиеся «обломки» подвергаются внутриклеточному перевариванию. Остеобласты (клетки-строители) создают новые элементы кости.

Первичные лизосомы могут сливаться с фагоцитарными и пиноцитарными вакуолями, образуя вторичные лизосомы. В них происходит переваривание веществ, поступивших в клетку путем эндоцитоза, усвоение их. Вторичные лизосомы — пищеварительные вакуоли, ферменты которых доставлены с помощью мелких первичных лизосом. Вторичные лизосомы (пищеварительные вакуоли) у простейших(амеб, инфузорий) - это способ поглощения пищи. Вторичные лизосомы могут выполнять защитную функцию, когда, например, лейкоциты (фагоциты) захватывают и переваривают попавшие в организм бактерии.

Продукты переваривания поглощаются клеткой, но часть материала может остаться непереваренной. Вторичные лизосомы, содержащие нерасщепленный материал, называют остаточными тельцами или телолизосомами. Остаточные тельца обычно через плазматическую мембрану выводятся наружу (экзоцитоз). У человека при старении организма в остаточных тельцах клеток мозга, печени и в мышечных волокнах накапливается «пигмент старения» - липофусцин.

Аутолизосомы (аутофагирующие вакуоли) присутствуют в клетках простейших, растений и животных. В этих лизосомах происходит разрушение отработанных органелл самой клетки (ЭПС, митохондрий, рибосом, гранул гликогена, включений и др.). Например, в клетках печени среднее время жизни одной митохондрии — около 10 дней. После этого срока мембраны эндоплазматической сети окружают митохондрию, образуя аутофагосому. Аутофагосомы сливаются с лизосомой, образуя аутофаголизосому, в которой происходит процесс распада митохондрии. Процесс уничтожения структур, ненужных клетке, называется аутофагией. Число аутолизосом возрастает при повреждениях клетки. В результате высвобождения содержимого лизосом в цитоплазму происходит саморазрушение клетки или аутолиз. При некоторых процессах дифференцировки аутолиз может быть нормой. Например, при исчезновении хвоста у головастика во время превращения его в лягушку. Ферменты лизосом принимают участие в аутолизе погибших клеток

Известно более 25 генетических заболеваний, связанных с патологией лизосом. Например, в лизосомах может происходить накопление гликогена, если отсутствует соответствующий фермент.

Рибосомы относят к немембранным органеллам клетки. На рибосомах осуществляется соединение аминокислотных остатков в полипептидные цепочки (синтез белка). Рибосомы очень малы и многочисленны.

Каждая рибосома состоит из двух частей: малой и большой субъединиц. В первую входят молекулы белка и одна молекула рибосомальной РНК (р–РНК), во вторую - белки и три молекулы р–РНК. Белок и р–РНК по массе в равных количествах участвуют в образовании рибосом. Р–РНК синтезируется в ядрышке.

В синтезе белка, кроме рибосом, принимают участие матричная РНК (м–РНК) и транспортная РНК (т–РНК). М–РНК несет генетическую информацию о синтезе белка от ядра. Эта информация закодирована в последовательном расположении нуклеотидов в молекуле м–РНК. М–РНК присоединяется к поверхности малой субъединицы. Т–РНК доставляет из цитоплазмы к рибосоме необходимые аминокислоты, из которых строится полипептидная цепь. В растущей полипептидной цепи каждая аминокислота занимает соответствующее место, что определяет качество синтезируемого белка. В процессе синтеза белка рибосома перемещается вдоль м–РНК.

Митохондрии имеются во всех эукариотических клетках. Основная функция митохондрии связана с окислением органических соединений и использованием энергии, освобождающейся при распаде этих соединений, для синтеза молекул АТФ.

Число, размеры, форма митохондрии в клетке различны и непостоянны. Митохондрии могут иметь вытянутую, округлую, спиральную, палочковидную форму.

В клетках, нуждающихся в большом количестве энергии, митохондрии много. Например, в одной печеночной клетке их может быть около 1000. Локализация митохондрии различна. Обычно они скапливаются вблизи тех участков цитоплазмы, где велика потребность в энергии АТФ. Например, в скелетных мышцах митохондрии находятся вблизи миофибрилл.

Каждая митохондрия окружена двумя мембранами. Наружная митохондриальная мембрана, отделяющая ее от гиалоплазмы, гладкая. Наружную мембрану от внутренней отделяет межмембранное пространство. Внутренняя мембрана, ограничивающая матрикс митохондрии, образует многочисленные складки (кристы). Чем больше крист присутствует в митохондрии, тем интенсивнее протекают окислительно-восстановительные процессы.

Например, митохондрии клеток сердечной мышцы содержат втрое больше крист, чем митохондрии клеток печени.

В матриксе митохондрии находятся различные ферменты, кольцевая молекула ДНК, рибосомы, РНК. На митохондриальных рибосомах синтезируются белки, специфические для органеллы. Митохондрии относят к полуавтономным органеллам.

На внутренней мембране присутствуют белки, катализирующие окислительно-восстановительные реакции в дыхательной цепи, ферменты, участвующие в синтезе АТФ, и специфические транспортные белки.

Наружная мембрана содержит ферменты, участвующие в синтезе митохондриальных липидов.

Митохондрии называют энергетическими станциями клетки. В них происходит окисление органических веществ, благодаря чему освобождается заключенная в веществах энергия. Она необходима для осуществления всех жизненных процессов в клетке. Эта энергия используется на восстановительные процессы. В митохондриях осуществляется восстановление (синтез) АТФ (аденозинтрифосфорной кислоты) из АДФ (аденозиндифосфорной кислоты). В результате энергия, выделившаяся при разложении веществ, вновь переходит в связанную форму в молекуле АТФ.

АТФ транспортируется ко всем участкам клетки, где необходима энергия. Эта энергия, заключенная в макроэргических связях в молекуле АТФ, выделяется при распаде АТФ до АДФ. АДФ снова поступает в митохондрии, где в ходе восстановительных реакций превращается в АТФ, связав энергию, освобожденную при окислении веществ.

Окислительно-восстановительные процессы в митохондриях протекают ступенчато, при участии окислительных ферментов. Эти процессы обусловлены переходом энергии химических связей, заключенной в веществах, в макроэргическую связь в молекуле АТФ, которая синтезируется при использовании освобождающейся энергии из АДФ и фосфата.

Митохондрии размножаются поперечным делением или фрагментацией на более короткие.

Пластиды – двумембранные органеллы, присутствующие в растительных клетках. Различают три вида пластид: хлоропласты, хромопласты и лейкопласты.

Хлоропласты – органеллы, осуществляющие фотосинтез, ограничены двумя мембранами – внешней и внутренней. Между мембранами есть межмембранное пространство. В хлоропластах присутствует зеленый пигмент – хлорофилл, находящийся в системе мембран, которые погружены во внутреннее содержимое пластид – матрикс (или строму).

В строме хлоропластов находятся плоские мембранные структуры, называемые ламеллами. Ламеллы стромы лежат параллельно друг другу и связаны между собой. Две соседние мембраны, соединяясь концами, формируют замкнутые плоские мембранные структуры в форме диска – тилакоиды, – содержащие внутри жидкость. Тилакоиды, уложенные в стопки, образуют граны. Число тилакоидов на одну грану варьирует: от нескольких единиц до 50 и более. Тилакоиды в гране тесно сближены друг с другом. В состав граны, кроме замкнутых дисков тилакоидов, входят участки ламелл. Ламеллы стромы связывают между собой отдельные граны хлоропласта.

Количество гран в хлоропластах может достигать 40-60. В мембранных структурах хлоропластов присутствуют пигменты: зеленые (хлорофиллы А и В), желто-оранжевые (ксантофилл и каротин) и др., ферменты, синтезирующие АТФ и переносчики электронов.

Обычно различают две фазы:

Световая фаза, в ходе которой происходит превращение энергии света в химическую энергию фотолиза воды. Эта фаза завершается образованием АТФ и НАДФ-Н (фотофосфорилирование). Процесс происходит в тилакоидах, где локализуются фотосистемы, поглощающие энергию солнечных лучей (хлорофилловые пигменты), а также ферменты, осуществляющие процесс переноса электронов и фотофосфорилирование.

Темновая фаза в основном протекает в строме. В результате целого ряда реакций, проходящих в эту фазу, синтезируются органические вещества (восстановление СО2). Процесс протекает благодаря АТФ и НАДФ·Н, синтезированных в предыдущей фазе. Образующаяся глюкоза поступает в цитоплазму, а при необходимости может временно сохраняться в виде полимера (крахмала).

В строме хлоропластов находятся кольцевые молекулы ДНК, рибосомы, РНК, различные ферменты. Пластиды, как и митохондрии, способны к синтезу собственных белков. Пластиды относятся к полуавтономным органеллам. В хлоропластах происходит фотосинтез, в результате которого связывается углекислый газ, выделяется кислород и образуются органические вещества.

В процессе фотосинтеза выделяют две стадии: световую и темновую.

Световая стадия происходит на свету, при участии хлорофилла. Хлорофилл, присутствующий в гранах хлоропластов, принимает участие в поглощении энергии солнечного света и превращении ее в энергию химических связей в веществах. В результате ряда реакций накапливается энергия, выделяется кислород. В темновой стадии, протекающей в строме без участия света, полученная энергия используется в реакциях восстановления СО2 и с помощью ферментов осуществляется синтез углеводов.

Хлоропласта размножаются делением.

Хромопласты – окрашенные пластиды, не участвуют в фотосинтезе. Окраска пластид обусловлена присутствием красных, желтых, оранжевых пигментов. Хромопласты образуются из хлоропластов или редко из лейкопластов (например, в моркови). Присутствие хромопластов в лепестках цветов и плодах обусловливает яркость их окраски и способствует привлечению насекомых- опылителей цветов и животных, распространителей плодов.

Лейкопласты бесцветны. Они не содержат пигментов, но приспособлены для хранения запасов питательных веществ, например, крахмала. Лейкопластов особенно много в корнях, семенах, корневищах и клубнях. Лейкопласты отличаются от хлоропластов тем, что содержат мало ламелл, но под влиянием света способны образовывать тилакоидные структуры и приобретать зеленую окраску. Например, картофель может позеленеть, если его хранить на свету.

 

Клеточный центр располагается около ядра и состоит из парных центриолей и центросферы.

Центриоли характерны для животных клеток, их нет у высших растений, низших грибов и некоторых простейших. Центриоли окружены зоной более светлой цитоплазмы, от которой радиально отходят тонкие фибриллы (центросферы).

Основу центриолей составляют девять триплетов микротрубочек (9+0), расположенных по окружности, и образующих полый цилиндр. Триплеты микротрубочек по кольцу объединены фибриллами. Радиальные фибриллы от каждого триплета отходят к центру, где они соединяются друг с другом.

Перед делением ядра в синтетическом периоде центриоли удваиваются. В начале митоза к полюсам клетки направляются по две центриоли. Они принимают участие в формировании веретена деления, состоящего из микротрубочек. Центриоли участвуют в организации цитоплазматических микротрубочек.

Микротрубочки - трубочки, образованные белком тубулином, диаметром 24 мм. Участвуют в образовании цитоскелета и делении ядра.

Микрофиламенты - нити белка актина длиной 6 нм 1. Участие в образовании цитоскелета, образование кортикального слоя под плазматической мембраной.

 

Особенности строения растительной клетки:







Дата добавления: 2015-08-12; просмотров: 2319. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия