Студопедия — Обработка результатов прямых измерений
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Обработка результатов прямых измерений






 

Обычно в реальных измерениях присутствуют и случайные и систематические (аппаратурные) погрешности. Если вычисленная случайная погрешность прямых измерений равна нулю или меньше аппаратурной в два и большее число раз, то при вычислении погрешности косвенных измерений в расчет должна приниматься аппаратурная погрешность. Если эти погрешности отличаются меньше, чем в два раза, то абсолютная погрешность вычисляется по формуле

 

(1)

 

Случайная погрешность измерения обычно неизвестна, как неизвестно и истинное значение измеряемой величины. Поэтому задача элементарной обработки результатов измерений заключается в установлении интервала, внутри которого с заданной вероятностью находится истинное значение измеряемой физической величины.

Пусть в результате прямых измерений физической величины получен ряд ее значений: x 1, x 2,..., xn.

Зная этот ряд чисел, нужно указать значение, наиболее близкое к истинному значению измеряемой величины, и найти величину случайной погрешности. Эту задачу решают на основе теории вероятностей, подробное изложение которой выходит за рамки нашего курса.

Наиболее вероятным значением измеряемой физической величины (близким к истинному) считают среднее арифметическое

 

(2)

 

Здесь xi - результат i -го измерения, n - число измерений. В случае малого n правильная оценка погрешности основана на использовании распределения Стьюдента (t – распределения). Случайная ошибка измерения может быть оценена величиной случайной абсолютной погрешности D x сл., которую вычисляют по формуле

 

(3)

 

где t (a, n) - коэффициент Стьюдента, зависящий от числа измерений n и доверительной вероятности a. Значение доверительной вероятности a задает сам экспериментатор.

Вероятностью случайного события называется отношение числа случаев, благоприятных для данного события, к общему числу равновозможных случаев. Вероятность достоверного события равна 1, а невозможного - 0.

Значение коэффициента Стьюдента, соответствующее заданной доверительной вероятности a и определенному числу измерений n, находят по табл. 1.

Из таблицы видно, что величина коэффициента Стьюдента и случайная погрешность измерения тем меньше, чем больше n и меньше a. Практически выбирают a = 0,95. Однако простое увеличение числа измерений не может свести общую погрешность к нулю, так как любой измерительный прибор дает погрешность.

Таблица 1

 

Число Доверительная вероятность a
измерений n 0,6 0,7 0,95 0,98
  1,38 2,0 12,7 31,8
  1,06 1,3 4,3 7,0
  0,98 1,3 3,2 4,5
  0,94 1,2 2,8 3,7
  0,92 1,2 2,6 3,4
  0,90 1,1 2,4 3,1
  0,90 1,1 2,4 3,0
  0,90 1,1 2,3 2,9
  0,88 1,1 2,3 2,8
  0,84 1,0 2,0 2,3

 

Поясним смысл терминов абсолютная погрешность D x и доверительная вероятность a, используя числовую ось. Пусть среднее значение измеряемой величины <x>; (рис. 1), а вычисленная абсолютная погрешность D x. Отложим D x от <x>; справа и слева. Полученный числовой интервал от (<x>; ─ Δ x) до (<x>; + D x) называется доверительным интервалом. Внутри этого доверительного интервала находится истинное значение измеряемой величины x.

 

 

Рис. 1

 

Если измерения той же величины повторить теми же приборами в тех же условиях, то истинное значение измеряемой величины x ист. попадет в этот же доверительный интервал, но попадание будет не достоверным, а с вероятностью a.

Вычислив величину абсолютной погрешности D x по формуле (1), истинное значение x измеряемой физической величины можно записать в виде x = <x>; ± D x.

Величина абсолютной погрешности Δ x результата измерений еще не определяет точности измерений. Для оценки точности измерения физической величины подсчитывают относительную погрешность, которую обычно выражают в процентах:

(4)

 

За меру точности измерения принимают величину 1/ε. Следовательно, чем меньше относительная погрешность ε, тем выше точность измерений.

Таким образом, при обработке результатов прямых измерений необходимо проделать следующее:

1. Провести измерения n раз (обычно 5).

2. Вычислить среднее арифметическое значение <x>; по формуле (2).

3. Задать доверительную вероятность a (обычно берут a = 0,95).

4. По табл. 1 найти коэффициент Стьюдента, соответствующий заданной доверительной вероятности a и числу измерений n.

5. Вычислить абсолютную погрешность по формуле (3) и сравнить ее с аппаратурной погрешностью. Для дальнейших вычислений взять ту из них, которая больше (см. пример на с. 8).

6. По формуле (4) вычислить относительную ошибку e.

7. Записать окончательный результат

 

x = <x>; ± D x

 

с указанием относительной погрешности e и доверительной вероятности a.

Обычно кроме прямых измерений в лабораторной работе присутствуют косвенные измерения.

 







Дата добавления: 2015-08-12; просмотров: 562. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия