Студопедия — Свойства определителей. Для определителей справедливы следующие утверждения, называемые свойствами определителей.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Свойства определителей. Для определителей справедливы следующие утверждения, называемые свойствами определителей.






Для определителей справедливы следующие утверждения, называемые свойствами определителей.

1. Определитель не изменяется при транспонировании: detAT=detA.

2. Если строка (столбец) матрицы A равна линейной комбинации соответственных строк (столбцов) матриц A и B, а остальные строки (столбцы) этих матриц совпадают, то ее определитель равен линейной комбинации определителей матриц A и B:

Ai = a·Bi + b·Ci, detA = a·detB + b·detC,

A(j) = a·B(j) + b·C(j), detA = a·detB + b·detC.

3. При перестанровке любых двух строк (столбцов), определитель меняет знак.

4. Если в определителе есть две одинаковые строки (два одинаковых столбца), то он равен нулю.

5. Если в определителе есть две пропорциональные строки (два пропорциональные столбца), то он равен нулю.

6. Определитель не изменится, если к элементам любой его строки (столбца) прибавить элементы любой другой строки (столбца), умноженные на одно и то же число.

7. Определитель, содержащий нулевую строку (нулевой столбец), равен нулю.

8. Сумма произведений элементов любой строки (столбца) на алгебраические дополнения другой строки (другого столбца) равна нулю.

9. Определитель произведения матриц равен произведению определителей сомножителей.

Перечисленные свойства позволяют упростить вычисление определителя.

Пример. поскольку 1-я и 3-я строки пропорциональны.

 







Дата добавления: 2015-08-12; просмотров: 411. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия