Студопедия — в закрытых системах
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

в закрытых системах

Термодинамические процессы идеальных газов

Основными процессами, весьма важ­ными и в теоретическом, и в прикладном отношениях, являются: изохорный, протекающий при постоянном объеме; изобарный, протекающий при посто­янном давлении; изотермический, происходящий при постоянной темпера­туре; адиабатный — процесс, при ко­тором отсутствует теплообмен с окружа­ющей средой, и политропный, удов­летворяющий уравнению .

Метод исследования процессов, не зависящий от их особенностей и являю­щийся общим, состоит в следующем:

выводится уравнение процесса, уста­навливающее связь между начальными и конечными параметрами рабочего тела в данном процессе;

вычисляется работа изменения объема газа;

определяется количество теплоты, подведенной (или отведенной) к газу в процессе;

определяется изменение внутренней энергии системы в процессе;

определяется изменение энтропии системы в процессе.

Изохорный процесс. При изохорном процессе выполняется условие

dv = 0 или v = const. Из уравнения состояния иде­ального газа следует, что p/T=R/v= const, т. е. давление газа прямо пропорционально его абсолютной темпе­ратуре:

.

Рисунок 5.1 - Изображение изохорного процесса в р,v- и T, s -координатах

Работа расширения в этом процессе равна нулю, так как dv= 0.

Количество теплоты, подведенной к рабочему телу в процессе 12 при , определяется как:

При переменной теплоемкости , где — средняя массовая изохорная теплоемкость в интервале темпера­тур от t 1 до t 2.

Так как 1= 0, то в соответствии с пер­вым законом термодинамики и

Поскольку внутренняя энергия идеально­го газа является функцией только его температуры, то полученные формулы справед­ливы для любого термодинамического процесса идеального газа.

Изменение энтропии в изохорном процессе определяется по формуле

,

т. е. зависимость энтропии от температу­ры на изохоре при сv = const имеет лога­рифмический характер.

Изобарный процесс. Из уравнения состояния идеального газа при р =const находим , или , т. е. в изобарном процессе объем газа пропорционален его абсолютной темпе­ратуре (закон Гей-Люссака, 1802 г.). На рисунке изображен график процесса.

Рисунок 5.2 - Изображение изобарного процесса в p,v - и T,s -координатах

Из выражения следует, что .

Так как и , то одно­временно

Количество теплоты, сообщаемое га­зу при нагревании (или отдаваемое им при охлаждении):

,

где — средняя массовая изобарная теплоемкость в интервале темпера­тур от t 1до t 2при = const

.

Изменение энтропии при ср = const согласно равно

,

т. е. температурная зависимость энтро­пии при изобарном процессе тоже имеет логарифмический характер, но поскольку срv, то изобара в Т,s-диаграмме идет более полого, чем изохора.

Изотермический процесс. При изотер­мическом процессе температура постоян­на, следовательно, pv = RT = const, или

,

т. е. давление и объем обратно пропорци­ональны друг другу, так что при изо­термическом сжатии давление газа воз­растает, а при расширении — падает (закон Бойля — Мариотта, 1662 г.).

Графиком изотермического процесса в р,v –координатах является равнобокая гипербола, для которой координатные оси служат асимптотами.

Работа процесса:

.

Так как температура не меняется, то внутренняя энергия идеального газа в данном процессе остается постоянной () и вся подводимая к газу тепло­та полностью превращается в работу расширения:

 

 

Рисунок 5.3 - Изображение изотермического про­цесса в р, v- и T, s -координатах.

 

При изотермическом сжатии от газа от­водится теплота в количестве, равном затраченной на сжатие работе.

Изменение энтропии в изотермиче­ском процессе выражается формулой

.

Адиабатный процесс. Процесс, про­исходящий без теплообмена с окружаю­щей средой, называется адиабатным, т. е. . Для того чтобы осуществить та­кой процесс, следует либо теплоизолиро­вать газ, т. е. поместить его в адиабат­ную оболочку, либо провести процесс на­столько быстро, чтобы изменение темпе­ратуры газа, обусловленное его тепло­обменом с окружающей средой, было пренебрежимо мало по сравнению с из­менением температуры, вызванным рас­ширением или сжатием газа. Как прави­ло, это возможно, ибо теплообмен про­исходит значительно медленнее, чем сжатие или расширение газа.

Уравнения первого закона термоди­намика для адиабатного процесса прини­мают вид: . Поделив первое уравнение на второе, получим

Интегрируя последнее уравнение при условии, что k =cp/cv= const, находим

После потенцирования имеем

. *

Это и есть уравнения адиабаты идеаль­ного газа при постоянном отношении теплоемкостей (k = const). Величина

называется показателем адиаба­ты. Подставив cp = cv-R, получим k. Согласно классической кине­тической теории теплоемкость газов не зависит от температуры, по­этому можно считать, что величина k также не зависит от температуры и оп­ределяется числом степеней свободы мо­лекулы. Для одноатомного газа k =1,66 для двухатомного k =1,4, для трех- и многоатомных газов k =l,33.

Поскольку k>;1, то в координатах р, v линия адиабаты идет круче линии изотермы: при адиабатном расши­рении давление понижается быстрее, чем при изотермическом, так как в процессе расширения уменьшается температура газа.

Рисунок 5.4 - Изображение адиабатного процесса в р, v- и Т, s-координатах

Определив из уравнения состояния, написанного для состояний 1 и 2, отно­шение объемов или давлений, получим уравнение адиабатного процесса в форме, выражающей зависимость температуры от объема или давления:

;

.

Работа расширения при адиабатном процессе согласно первому закону термодинамики совершается за счет уменьшения внутренней энергии и может быть вычислена по одной из следующих формул:

.

Так как и , то

.

В данном процессе теплообмен газа с окружающей средой исключается, по­этому q=0. Выражение пока­зывает, что теплоемкость адиабатного процесса равна нулю.

Поскольку при адиабатном процессе = 0, энтропия рабочего тела не изме­няется (ds =0 и s =const). Следователь­но, на Т,s-диаграмме адиабатный про­цесс изображается вертикалью.

Политропный процесс и его обобща­ющее значение. Любой произвольный процесс можно описать в р,v -координатах (по крайней мере на небольшом участке) уравнением

,

подбирая соответствующее значение п. Процесс, описываемый таким уравнением, называется политропным. Показатель политропы n может прини­мать любое численное значение в преде­лах от , но для данного процесса он является величиной посто­янной.

Из уравнения Клапейрона нетрудно получить выраже­ния, устанавливающие связь между р, v и Т в любых двух точках на политропе, аналогично тому, как это было сделано для адиабаты:

; ; . (5.1)

Работа расширения газа в политропном процессе имеет вид .

Так как для политропы в соответст­вии с (5.1)

,

то

(5.2)

Уравнение (5.1) можно преобразо­вать к виду:

Количество подведенной (или отве­денной) в процессе теплоты можно опре­делить с помощью уравнения первого закона термодинамики: .

Поскольку , то

,

где

представляет собой теплоемкость иде­ального газа в политропном процессе. При постоянных cv, k и п теплоемкость с n = const, поэтому политропный процесс иногда определяют как процесс с посто­янной теплоемкостью.

Изменение энтропии

.

Политропный процесс имеет обобща­ющее значение, ибо охватывает всю со­вокупность основных термодинамических процессов. Ниже приведены характери­стики термодинамических процессов.

Процесс п
Изохорный
Изобарный 0
Изотермический 1
Адиабатный k 0

На рисунке показано взаимное распо­ложение на р, V- и Т, s-диаграммах политропных процессов с разными значения­ми показателя политропы. Все процессы начинаются в одной точке («в центре»).

 

Рисунок 5.5 - Изображение основных термоди­намических процессов идеального газа в р, v- и Т, s-координатах

 

Изохора (п= ± ) делит поле диаг­раммы на две области: процессы, нахо­дящиеся правее изохоры, характеризу­ются положительной работой, так как сопровождаются расширением рабочего тела; для процессов, расположенных ле­вее изохоры, характерна отрицательная работа.

Процессы, расположенные правее и выше адиабаты, идут с подводом теп­лоты к рабочему телу; процессы, лежа­щие левее и ниже адиабаты, протекают с отводом теплоты.

Для процессов, расположенных над изотермой (= 1), характерно увеличе­ние внутренней энергии газа; процессы, расположенные под изотермой, сопро­вождаются уменьшением внутренней энергии.

Процессы, расположенные между адиабатой и изотермой, имеют отрица­тельную теплоемкость, так как и du (а следовательно, и dT), имеют в этой области противоположные знаки. В таких процессах , поэтому на производство работы при расширении тратится не только подводимая теплота, но и часть внутренней энергии рабочего тела.

 




<== предыдущая лекция | следующая лекция ==>
Расчет размерной цепи методом неполной взаимозаменяемости | Вынужденные электрические колебания. Методические указания к виртуальному

Дата добавления: 2015-09-04; просмотров: 1124. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вопрос. Отличие деятельности человека от поведения животных главные отличия деятельности человека от активности животных сводятся к следующему: 1...

Расчет концентрации титрованных растворов с помощью поправочного коэффициента При выполнении серийных анализов ГОСТ или ведомственная инструкция обычно предусматривают применение раствора заданной концентрации или заданного титра...

Психолого-педагогическая характеристика студенческой группы   Характеристика группы составляется по 407 группе очного отделения зооинженерного факультета, бакалавриата по направлению «Биология» РГАУ-МСХА имени К...

ИГРЫ НА ТАКТИЛЬНОЕ ВЗАИМОДЕЙСТВИЕ Методические рекомендации по проведению игр на тактильное взаимодействие...

Реформы П.А.Столыпина Сегодня уже никто не сомневается в том, что экономическая политика П...

Виды нарушений опорно-двигательного аппарата у детей В общеупотребительном значении нарушение опорно-двигательного аппарата (ОДА) идентифицируется с нарушениями двигательных функций и определенными органическими поражениями (дефектами)...

Studopedia.info - Студопедия - 2014-2024 год . (0.016 сек.) русская версия | украинская версия