Студопедия — Модель максимизации ожидаемого дохода при заданном уровне риска.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модель максимизации ожидаемого дохода при заданном уровне риска.






В соответствии с классическим подходом модель должна быть записана в следующей форме:

(2.1.1)

(2.1.2)

В данной модели есть четкое бинарное отношение: , есть приемлемый уровень риска, на который готов пойти инвестор.

Однако представленная модель является недостаточно корректной, так как ожидаемая доходность портфеля есть нечеткая величина (2.1).

В связи с этим требуется введение дополнительного принципа принятия решений, уже в условиях нечетких данных [94].

Одним из них является переход к модальным значениям соответствующих нечетких величин. Его применение приводит к следующей модели:

, (2.1.3)

(2.1.4)

где обозначает переход к модальным значениям нечетких величин.

Согласно результатам, представленными в первой главе диссертации,

.

Если нечеткие случайные величины при фиксированном принадлежат классу

, то

. Пусть , т.е. . Тогда, принимая во внимание доказанную в первой главе лемму 1.4.2, мы получаем при следующую модель, эквивалентную (2.1.1), (2.1.2),

, (2.1.5)

(2.1.6)

Полученная задача (2.1.5)-(2.1.6) есть задача квадратичного программирования. Она может быть решена стандартными методами [8].

 

2.2.2. Модель максимизации возможности (необходимости) достижения нечеткого уровня ожидаемой доходности при фиксированном уровне риска.

Следующий подход к решению задачи связан с ее рассмотрением в рамках модели нечеткого целевого программирования [59]. Его применение приводит к следующей модели:

(2.2.1)

(2.2.2)

где , есть четкое бинарное отношение: , есть нечеткий уровень притязаний критерия, приемлемый для инвестора.

Рассмотрим сначала случай , в модели критерия задачи. Тогда модель (2.2.1)-(2.2.2) имеет эквивалентную, которая может быть записана в форме

(2.2.3)

(2.2.4)

Прежде чем доказать теорему, позволяющую построить детерминированный эквивалент модели (2.2.3)-(2.2.4), приведем необходимую для ее доказательства лемму [59].

Лемма 2.2.1. Пусть где -минисвязные нечеткие величины, определенные на возможностном пространстве , . Тогда: .

 

Теперь мы готовы сформулировать и доказать следующую теорему.

Теорема 2.2.1. Пусть в задаче (2.2.3)-(2.2.4) возможностные параметры , являются минисвязанными, тогда задача (2.2.3)-(2.2.4) имеет эквивалентный детерминированный аналог следующего вида:

, (2.2.5)

(2.2.6)

где -дополнительная переменная.

Доказательство.

На основании определения меры возможности преобразуем целевую функцию следующим образом:

.

С учетом полученной формулы и леммы 2.2.1 исходная задача эквивалентна следующей задаче математического программирования.

.

Путем введения дополнительной переменной [59] модель критерия сводится к эквивалентной модели - задаче математического программирования.

С учетом модели ограничений (2.2.4) мы получаем утверждение теоремы.

Теорема доказана.

Полученная модель допускает сведение к сепарабельной задаче при некоторых дополнительных условиях.

Действительно. Преобразуем ограничение .

Для этого воспользуемся следующим равенством:

.

Введем дополнительные переменные: .

Тогда наше ограничение примет следующий вид: .

Это есть сепарабельное ограничение.

В результате наша задача (2.2.5)-(2.2.6) сводится к задаче математического программирования следующего вида.

, (2.2.7)

(2.2.8)

Таким образом, мы получили детерминированный аналог для задачи максимизации возможности достижения нечеткого уровня ожидаемой доходности при фиксированном уровне риска.

Далее, преобразуя выражение для дисперсии по уже известной формуле (теорема 1.4.1), а также принимая , получаем:

Если предположить, что параметры возможностного распределения являются независимыми случайными величинами, то

.

В результате наша задача (2.2.7)-(2.2.8) сводится к следующей сепарабельной задаче.

, (2.2.9)

(2.2.10)

Уточним полученную модель (2.2.9)-(2.2.10) для некоторых классов распределений.

Пусть ,

. Тогда модель (2.2.9)-(2.2.10) может быть преобразована к следующей эквивалентной модели:

, (2.2.11)

(2.2.12)

При ее построении мы учитываем вид распределений и то, что получающееся при этом неравенство

эквивалентно двум неравенствам

а неравенство

эквивалентно следующим неравенствам

Рассмотрим модель (2.2.1)-(2.2.2) в случае меры необходимости, . Получаем модель следующего вида.

(2.2.13)

(2.2.14)

Докажем соответствующую теорему.

Теорема 2.2.2. Пусть в задаче (2.2.13)-(2.2.14) возможностные параметры , являются минисвязанными, тогда задача (2.2.13)-(2.2.14) имеет эквивалентный детерминированный аналог следующего вида:

, (2.2.15)

(2.2.16)

Доказательство.

Имеем.

.

Следовательно модель (2.2.13) эквивалентна

.

Если распределения и непрерывны [91], то

и эквивалентная модель критерия имеет вид

.

Таким образом, модель (2.2.13)-(2.2.14) имеет следующий эквивалентный детерминированный аналог.

,

Теорема доказана.

Далее, преобразуя выражение для дисперсии по уже известной формуле (теорема 1.4.1), а также принимая , получаем:

Если предположить, что параметры возможностного распределения являются независимыми случайными величинами, то

.

Тогда наша задача будет иметь следующий вид.

, (2.2.17)

(2.2.18)







Дата добавления: 2015-09-04; просмотров: 374. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Общая и профессиональная культура педагога: сущность, специфика, взаимосвязь Педагогическая культура- часть общечеловеческих культуры, в которой запечатлил духовные и материальные ценности образования и воспитания, осуществляя образовательно-воспитательный процесс...

Устройство рабочих органов мясорубки Независимо от марки мясорубки и её технических характеристик, все они имеют принципиально одинаковые устройства...

Ведение учета результатов боевой подготовки в роте и во взводе Содержание журнала учета боевой подготовки во взводе. Учет результатов боевой подготовки - есть отражение количественных и качественных показателей выполнения планов подготовки соединений...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия