Студопедия — Основы геометрической акустики
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основы геометрической акустики






 

Хорошая слышимость в залах возникает при поступлении прямой звуковой энергии и отраженных звуков в зону зрительских мест.

Прямая передача звука обеспечивается достаточным уклоном пола зала и отсутствием преград на пути распространения звуков от источника к слушателям (например, колонн). Радиус действия прямого звука rпр составляет для речи 8 – 9 м, для музыки – 10 – 12 м. На зрительских местах в пределах rпр усиление прямого звука с помощью отражений не требуется. По мере удаления от источника звука, начиная с rпр, энергии прямого звука не хватает для создания хорошей слышимости, поэтому интенсивные первые отражения должны перекрывать всю зону зрительских мест.

Оценка формы и размеров залов, а также отдельных поверхностей с акустической точки зрения состоит в анализе звукового поля на основе принципов геометрической акустики, то есть в рассмотрении распространения прямых и отраженных звуковых лучей и построении так называемого «лучевого эскиза».

 

1.1. Построение звуковых отражений от плоских и криволинейных поверхностей.

 

Построение отражений от плоских поверхностей производится с помощью метода мнимого источника звука (рис. 1а). Мнимый источник F′ симметричен с действительным точечным источником F по отношению к отражающей плоскости и находится по другую ее сторону.

Звуковой луч, исходящий от источника F, падает на отражающую поверхность под некоторым углом, отражается от нее под тем же углом и представляется наблюдателю исходящим из точки F′, которая является зеркальным изображением точки F.

Для построения мнимого источника надо опустить из точки F перпендикуляр на отражающую поверхность и на продолжении его отложить отрезок F′O, равный FO. Продолжение АМ прямой F′M, проведенной из мнимого источника звука, является отраженным лучом. Итак, луч FА является лучом, падающим на поверхность, луч АМ – отраженным от поверхности и луч FМ является прямым звуком.

 

При отражении от вогнутых поверхностей звуковые лучи сходятся в точке, которая называется фокус (рис.1б). Фокусировка или концентрация звуков в зале является крупным акустическим недостатком. При этом в районе фокуса возникает зона повышенной громкости, а другие участки лишены усиливающих отражений («звуковые ямы»).

Устранение этого недостатка при проектировании залов обеспечивается выбором надлежащего радиуса кривизны R, при котором фокус не образуется в районе расположения мест зрителей. Если же оставить форму поверхности без изменений, то для избежания фокусирования звука следует применить членение поверхности для рассеивания отраженных звуков или облицевать ее звукопоглощающими материалами.

Место нахождения фокуса, образованного отраженными звуковыми лучами, определяется по формуле:

 

, (1)

где X – расстояние от фокуса до поверхности, м;

d - расстояние от источника звука до поверхности, м;

R – радиус кривизны поверхности, м.

Луч АМ, проходящий через фокус f и точку М (зритель в зале), является отраженным звуковым лучом.

 

Звукорассеивающий эффект вогнутой криволинейной поверхности наблюдается при условии R > 2d. В этом случае Х < 0 и фокус располагается по другую сторону поверхности (рис. 1в).

Построение отраженных звуковых лучей от выпуклых криволинейных поверхностей (рис.1г) свидетельствует о звукорассеивающих свойствах этих поверхностей. Поэтому на практике этот вид пластической отделки интерьера широко используется для создания диффузного звукового поля.

 

1.2. Допустимость применения геометрической акустики

 

Применение методов геометрической акустики можно считать допустимым, если наименьший размер отражающей поверхности не менее чем в 1,5 раза превышает длину звуковой волны λ или наименьший радиус кривизны отражателя не менее чем в 2 раза превышает длину волны λ. В этом случае отражение звука будет направленным.

Длина волны λ связана с частотой ν соотношением

λ = c / ν,

где c – скорость звука, равная 340 м/с.

Поверхности, дающие направленные отражения, следует проектировать таким образом, чтобы приведенное условие применимости геометрических отражений выполнялось, по крайней мере, для частот не менее 300-400 Гц (т.е. для звуковых волн 1м и менее), т.к. эти частоты важны для разборчивости речи. Построение геометрических отражений допустимо от точек поверхности, удаленных от ее краев не менее чем на половину длины волны λ, то есть при λ ≤ 1 м точки поверхности, отражающие звук, должны браться не ближе 0,5 м от ее краев.

 

1.3. Время запаздывания первых отражений. Эхо.

 

Первые звуковые отражения дополняют прямой звук источника, улучшая слышимость и разборчивость речи, ясность звучания музыки.

Время запаздывания Δt отраженного звука по сравнению с прямым не должно превышать 0,025 секунды для речи и 0,035с – для музыки. Более поздние отражения могут способствовать возникновению эха – отчетливому повторению прямого звука, т.е. крупному акустическому недостатку.

 

Время запаздывания определяется по формуле:

 

, с (2)

 

где Rпр,Rпад, Rотр - расстояния, пройденные прямым, падающим на поверхность и отраженным звуковыми лучами, м. Они определяются по методике, изложенной в разделе 1.1.

c – скорость звука, равная 340 м/с.

 







Дата добавления: 2015-09-04; просмотров: 2581. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия