Студопедия — Рабочие вещества холодильных машин. Классификация. Термодинамические, теплофизические, физико-химические, физиологические и озоноразрушающие свойства.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Рабочие вещества холодильных машин. Классификация. Термодинамические, теплофизические, физико-химические, физиологические и озоноразрушающие свойства.






В холодильных машинах рабочими веществами являются холодильные агенты и хладоносители.С помощью холодильных агентов совершается обратный термодинамический цикл в системе холодильной машины.Хладоносители являются промежуточными рабочими веществами, которые передают теплоту от охлаждаемого объекта к холодильному агенту.В какой-то мере к рабочим веществам можно отнести и смазочные масла, так как они циркулируют вместе с хладагентами по системе и значительно влияют на рабочие характеристики холодильных машин.

В настоящее время известно около ста различных холодильных агентов. Самыми распространенными из них являются: воздух, вода, аммиак, диоксид углерода, чистые углеводороды (пропан, метан, изобутан и др.), хлор – фтор – бромпроизводные углеводородов (хладоны) и другие вещества. В некоторых машинах целесообразно применение азеотропных и неазеотропных смесей холодильных агентов. В некоторых старых литературных источниках хладоны представлены их зарубежным названием – фреоны, которое запатентовано американской фирмой Дюпон.

Сокращенное обозначение холодильного агента строится по форме RN (где R – международный символ, обозначающий холодильный агент; N – присвоенный номер холодильного агента). Например R22 – хладон 22 (CHClF2), R729 – воздух, R170 – этан (C2H6), R717 – аммиак (NH3), R718 – вода (H2O), R744 – диоксид углерода (CO2) и т.п.

Возможность применения того или иного холодильного агента для конкретных условий работы зависит от их свойств. Свойства хладагентов влияют на конструктивные особенности холодильной машины, потребляемую мощность, холодопроизводительность и другие характеристики.К основным свойствам относятся:

1.теплофизические 4.физиологические

2.термодинамические 5.экологические

3.физико-химические

Теплофизические свойства – это теплоемкость (С), теплопроводность (λ), вязкость (μ), плотность (ρ), температуропроводность (а), поверхностное натяжение (η) и т др. Они главным образом влияют на интенсивность теплообмена в аппаратах, на потери давления в системе и на массу и габариты компрессора.

К термодинамическим свойствам относятся нормальная температура кипения, давление насыщения при температуре 30 °С, критическая температура, температура замерзания, теплота парообразования и др.

Физико-химические свойства включают в себя термическую стабильность, взрывоопасность, воспламеняемость, электрические свойства, взаимодействие со смазочным маслом, водой и конструкционными материалами и др.

Физиологические свойства показывают степень воздействия холодильных агентов на живой организм.

Экологические свойства показывают степень воздействия холодильных агентов на озоновый слой околоземной орбиты и парниковый эффект. Попадая в верхние слои атмосферы (стратосфера на высоте 16 – 45 км.) под воздействием солнечной радиации из хладонов выделяются хлор и бром. Они вступают в химическую реакцию с озоном, отнимают от него атом кислорода и образуют окись хлора и окись брома, тем самым уменьшая количество озона.


 

9 Азеотропные и не азеотропные смеси рабочих вещ-в. Принципы выбора вида х/а.

В настоящее время известно около ста различных холодильных агентов. Самыми распространенными из них являются: воздух, вода, аммиак, диоксид углерода, чистые углеводороды (пропан, метан, изобутан и др.), хлор – фтор – бромпроизводные углеводородов (хладоны) и другие вещества. В некоторых машинах целесообразно применение азеотропных и неазеотропных смесей холодильных агентов. Азеотропные смеси представляют собой однородный раствор хладонов, кипящий при постоянной температуре. Кипение неазеотропной смеси происходит при изменяющейся температуре, так как сначала выкипает низкотемпературный, а затем высокотемпературный компонент раствора. Азеотропные смеси имеют номера от 500 до 600. Неазеотропные смеси обозначаются номерами от 400 до 499 или дробными числами с процентным содержанием компонентов в скобках (например, смесь хладонов 22 и 12 с концентрацией соответственно 75% и 25%, обозначается R22/12 (75/25). Выбор хладагента для конкретной холодильной машины — одна из важнейших инженерных задач. При этом учитывают назначение машины, ее холодопроизводительность, условия эксплуатации, стоимость хладагента и разнообразие его свойств. В современной отечественной и зарубежной практике наибольшее применение в стационарных холодильных машинах большой холодопроизводительности для получения температур от 0 до -40°С нашел аммиак. Это связано с его хорошими термодинамическими свойствами и низкой стоимостью. В холодильных машинах малой холодопроизводительности, в бытовых холодильниках, а также транспортных установках используют фреоны. При температурах кипения от -10 до -25°С предпочтение пока отдают R12 из-за его более низкой стоимости и доступности по сравнению с R22, а также более низкой температуры конца сжатия в компрессоре. R22 применяют главным образом в низкотемпературных машинах при температурах кипения ниже -25°С. Наиболее предпочтительным для низкотемпературных одноступенчатых машин малой и средней холодопроизводительности является R502. К сожалению, отечественная химическая промышленность не выпускает его в нужном объеме. Применение фреонов в машинах большой холодопроизводительности сдерживается из-за их текучести (способности проникать через мельчайшие неплотности) и высокой стоимости.


10 Классификация рабочих веществ В холодильных машинах рабочими веществами являются холодильные агенты и хладоносители. Хладоносители являются промежуточными рабочими веществами, которые передают теплоту от охлаждаемого объекта к холодильному агенту. В какой-то мере к рабочим веществам можно отнести и смазочные масла, так как они циркулируют вместе с хладагентами по системе и значительно влияют на рабочие характеристики холодильных машин. Промежуточные хладоносители Вещества, с помощью которых теплота передается от охлаждаемых объектов к холодильному агенту, называются промежуточным хладоносителями или теплоносителями. Для охлаждаемых объектов они являются хладоносителями, а для испарителей холодильных машин – теплоносителями. Хладоносители бывают твердые, жидкие и газообразные. К твердым хладоносителям можно отнести водный лед, эвтектический лед, льдосоляную смесь, конструкционные материалы и т.д. Газообразными хладоносителями являются в основном воздух и специальные газовые смеси. Специальные газовые смеси имеют небольшую концентрацию кислорода и повышенную концентрацию азота и углекислого газа. Они используются редко для длительного хранения отдельных видов экзотических фруктов в герметичных камерах фруктоовощехранилищ. Системы охлаждения с использованием воздуха рассматриваются отдельно и носят название систем воздушного охлаждения. В холодильной технике под промежуточными хладоносителями, как правило, понимаются жидкие хладоносители. К жидким хладоносителям предъявляются следующие требования: большие теплопроводность и теплоемкость; низкая температура замерзания; малые вязкость и плотность; химическая инертность к конструкционным материалам; безвредность для человека; низкая стоимость и другие. В настоящее время пока не существует идиального хладоносителя. В наибольшей степени вышеперечисленным требованиям отвечает вода. Однако она имеет высокую температуру замерзания 0оС. Поэтому вода широко используется в системах кондиционирования воздуха и для охлаждения технологических аппаратов, когда необходимо получить температуру выше 0°С. Для получения более низких температур используются водные растворы солей и этиленгликоля, спирт, высококипящие хладоны и другие вещества. Температура замерзания водных растворов солей (рассолов) зависит от вида применяемой соли и ее концентрации. Для приготовления рассолов применяются хлористый натрий (NaCl), хлористый магний (MgCl2), хлористый кальций (CaCl2) и другие соли. Чем больше концентрация соли в воде, тем ниже температура замерзания раствора. Однако существует предельная концентрация соли, превышение которой не ведет к снижению температуры замерзания, а наоборот – к повышению температуры замерзания раствора. Такие температура и концентрация называются эвтектическими или криогидратными, а раствор называется эвтектикой. Для водного раствора NaCl эвтектическая температура tэ= - 21,2°С при эвтектической концентрации xэ=23,1%, для раствора MgCl2 – tэ= - 33,6°С при xэ=20,6%, для раствора СaCl2 – tэ= - 55°С при xэ=29,9 %. Большим недостатком рассолов является их коррозирующее действие на металлы, особенно в присутствии воздуха. Уменьшить коррозию металлов можно добавлением в хладоносители ингибиторов и пассиваторов. Эти вещества образуют на металлических поверхностях защитную пленку, замедляющую процесс коррозии. В качестве ингибиторов и пассиваторов используют хромат натрия (Na2CrO4), хромат калия (K2CrO4), бихромат натрия (Na2Cr2O7*2H2O) с едким натром (NaOH), двуметаллический фосфат натрия (Na2HPO4*12H2O) и другие. Применяя пассиваторы необходимо иметь нейтральный или слабощелочной раствор с рН = 8-9. Для увеличения кислотности рассол обогащают углекислым газом. Снизить кислотность можно раствором свежегашеной извести [Са(ОН)2].При увеличении концентрации соли возрастают вязкость и поверхностное натяжение раствора, что приводит к повышению гидравлических потерь в аппаратах и рассольных трубопроводах. Для снижение энергозатрат на привод рассольных насосов в растворы иногда добавляют высокомолекулярные соединения – поверхностно активные вещества (ПАВ) в небольших количествах (0,03 – 0,07 %). Кроме рассолов в холодильной технике в качестве промежуточных хладоносителей используются водные растворы этиленгликоля [C2H4(ОН)2], пропиленгликоля [C3H6(ОН)2], трихлорэтилена (С2НCl3) и др. Из указанных хладоносителей наиболее часто применяется водный раствор этиленгликоля, у которого лучшая корозионная стоикость, меньшая токсичность, большая удельная теплоемкость. Его недостатком является высокая стоимость (примерно в 5 раз выше, чем у рассола). В таблице 3.5. показаны физические свойства водного раствора этиленгликоля. Этиловый спирт в качестве промежуточного хладоносителя применяется главным образом в медицинских учреждениях для замораживания плазмы крови. Выбор хладоносителей В холодильных установках крупных холодильников промышленности и торговли в качестве хладо носителей используют в основном рассолы: водные растворы хлористого натрия NaCl и хлористого кальция СаСl2. Последний предпочтительнее из-за более низкой температуры замерзания и меньшей коррозионной активности. Однако он дороже, чем NaCl. Для снижения коррозионной активности в рассолы добавляют специальные ингибиторы, например, кальтозин. Для специальных целей, где требуется хладоноситель с особо низкой температурой, используют этиленгликоль, трихлорэтилен или дихлорметан (R30). Однако их стоимость значительно выше стоимости рассолов. Термодинамические диаграммы Теоретические циклы холодильных машин изображают на термодинамических диаграммах, которые позволяют лучше понять принцип действия холодильных машин. Термодинамические диаграммы, кроме того, служат теоретической базой для расчета холодильных машин в целом и,их отдельных элементов. Наиболее распространены диаграммы энтальпия — давление (h, lgp-диаграмма) и энтропия — температура (s, T-диаграмма). Первую применяют для тепловых расчетов, вторую — для анализа термодинамической эффективности циклов. При этом используют следующие простые измеряемые параметры: - температуру t в °С или абсолютную температуру T в К; - давление p в Па или производных единицах (1кПа=103Па, 1МПа= 106, Па= 10,2кгс/см2 = 10бар); - удельный объем в м3/кг; - плотность = 1/ в кг/м3, т. е. величину, обратную удельному объему. Кроме простых измеряемых параметров, используют также сложные расчетные параметры: - энтальпию h в кДж; - энтропию S в кДж/К. Энтальпия h — это полная энергия рабочего вещества (хладагента), зависящая от его термодинамического состояния. На диаграммах и в расчетах применяют обычно удельную энтальпию h в кДж/кг, т.е. отнесенную к единице массы хладагента. Удельную энтальпию можно выразить как h = u + p , где u — внутренняя энергия холодильного агента, кДж/кг; p — абсолютное давление, Па; — удельный объем, м3/кг. В этом выражении слагаемое pv представляет собой потенциальную энергию давления p. Она расходуется на совершение работы. Значения h, зависящие от принятого на конкретных диаграммах или в таблицах начала отсчета, в разных источниках (учебниках, справочниках) могут не совпадать при одних и тех же значениях t и p. Энтропия S — это также расчетный параметр, являющийся функцией термодинамического состояния хладагента, характеризующий направление протекания процесса теплообмена между хладагентом и внешней средой. На диаграммах и в расчетах пользуются удельной энтропией s в кДж/(кг К), т. е. отнесенной к единице массы хладагента. Интерес обычно представляет ее изменение s = q / Tm, где q — теплота, отнесенная к единице массы хладагента, кДж/кг; Tm — средняя абсолютная температура в течение процесса теплообмена, К. На h, Igp и s, T-диаграммах (рисунок 5.1) из точки К, соответствующей критическому состоянию хладагента, расходятся две так называемые пограничные кривые, разделяющие поле диаграммы на три зоны: переохлажденной жидкости (ПЖ), парожидкостной смеси (Ж + П) и перегретого пара (ПП). Если на h, lgp-диаграмме провести линию постоянного давления (p = const) —изобару, а на s, T-диаграмме линию постоянной температуры (T = const) — изотерму, то они пересекут пограничные кривые в точках A и В. В точке A хладагент находится в состоянии насыщенной жидкости, а в точке В — насыщенного пара. Фазовый переход от жидкости к пару на диаграммах идет слева направо. При подводе теплоты (энтальпия и энтропия возрастают) переохлажденная жидкость, до­стигнув состояния насыщения в точке А, начинает кипеть. По мере дальнейшего подвода теплоты содержание жидкости в единице массы хладагента уменьшается, а содержание пара увеличивается и в точке В достигает 100 %. Образуется насыщенный пар. Паросодержание х хладагента на левой пограничной кривой равно 0, а на правой 1. Состояние при х = 1 называют также сухим насыщеным паром, чтобы подчеркнуть, что пар не содержит частиц жидкости в отличие от влажного пара, представляющего собой смесь пара и жидкости (П + Ж). Фазовый переход от пара к жидкости на диаграммах идет справа налево. При отводе теплоты происходит процесс конденсации хладагента. Он начинается в точке В и заканчивается в точке А. На h,lg р-диаграмме разность значений энтальпий h в точках A и B будет равна величине r в кДж/кг, которую в зависимости от направления процесса (от А к В или от В к А) называют удельной (скрытой) теплотой парообразования или удельной теплотой конденсации. На s, Т-диаграмме величине r будет соответствовать площадь (заштрихованная) под процессом A – B,так как r = = Tm параметры, соответствующие состоянию хладагента на левой пограничной кривой (х = 0) обозначают с одним штрихом, а на правой (х = 1) — с двумя. Таким образом, r = h - h . В процессах кипения и конденсации давление и температура насыщения остаются неизменными, так как подводимая или отводимая теплота расходуется на изменение агрегатного состояния хладагента.

Теоретические циклы в области влажного пара. Функциональная схема одноступенчатой паровой холодильной машины с циклом сжатия в области сухого переменного пара и дросселированием насыщенной жидкости.

Схема и цикл с расширением и сжатием в области влажного пара.

 

 


Удельная холодопроизводительность qo = Пл.14аб1 = h1 – h4.

Схема и цикл с дросселированием и сжатием влажного пара.

Схема и цикл одноступенчатой холодильной машины с сжатием в области влажного пара и дросселированием.

 

Схема и цикл холодильной машины с регенеративным теплообменником.


 

12 Тепловой расчёт одноступенчатого цикла паровой холодильной машины

 

Удельная холодопроизводительность цикла или количество теплоты, подведенной к 1 кг холодильного агента в испарителе qо в S - T-диаграмме эквивалентна площади под процессом кипения 4 - 1, т.е. Пл.14аб1 или может быть определена разностью энтальпий хладагента в начале

h4 и конце h1 процесса: qo = Пл.14аб1 = h1 – h4.

Удельная теплота конденсации qк в S - T- диаграмме измеряется площадью под процессом конденсации 2 - 3, т.е. Пл. 23аб2 или определяется разностью энтальпий хладагента в начале h2 и в конце h3 процесса: qк= Пл.23аб2 = h2 – h3.

Удельная работа цикла lц находится из теплового баланса холодильной машины: qк = lц + qо

Отсюда получем: lц = qк – qо= Пл.23аб2 – Пл.14аб1 = Пл.12341.

Таким образом, удельная работа цикла равна разности теплоты, подведенной в конденсаторе и теплоты, отведенной в испарителе и в S - T- диаграмме эквивалентна площади самого цикла 12341.

С другой стороны с учетом энтальпий холодильного агента lц = qк – qо = (h2 – h3) – (h1 – h4),

или после преобразования получается: lц = (h2 – h1) – (h3 – h4) = lсж - lр,

где lс = (h2 – h1) – удельная работа сжатия, т.е. работа, затраченная на сжатие 1 кг пара холодильного агента в процессе 1-2, Дж/кг; lр = (h3 – h4) – удельная работа расширения, т.е. полезная работа, полученная в детандере одним килограммом хладагента в процессе 3-4, Дж/кг.

Термодинамическая эффективность цикла находится как отношение удельной холодопроизводительности к затраченной работе цикла:

Данный цикл можно рассматривать как теоретический цикл Карно при условии, что температура конденсации Tк будет равна температуре окружающей среды Tос, а температура кипения холодильного агента в испарителе будет равна температуре охлаждаемой среды (источника низкой температуры) Тинт. При этом все процессы цикла будут обратимыми, а работа цикла будет минимальной lmin.

Термодинамическая эффективность цикла Карно оценивается теоретическим холодильным коэффициентом. который является самым высоким из всех обратных термодинамических циклов при одинаковой разнице температур (Тос – Тинт).

 

 


 

13 Схема и цикл с перегревом пара и переохлаждением жидкого холодильного агента перед дросселированием. Для увеличения холодопроизводительности действительных холодильных машин поддерживается режим, при котором в испарителе выкипает весь жидкий холодильный агент. Для гарантированного исключения попадания жидкости в компрессор всегда пар хладагента перед всасыванием перегревается. В холодильных установках предприятий массового питания для сжатия пара как правило применяются поршневые компрессоры. Попадание даже небольшого количества жидкости в полость цилиндров может вызвать гидравлический удар и аварию всей холодильной машины, так как жидкость практически не сжимаема. Поэтому «сухой ход» – это обязательное условие работы компрессора холодильной машины. Кроме того с целью снижения необратимых потерь при дросселировании в реальных холодильных машинах жидкий хладагент перед дроссельным устройством охлаждается. Это повышает удельную холодопроизводительность цикла и холодильной установки в целом. Перегрев пара перед всасыванием в компрессор осуществляется или во всасывающем трубопроводе, или в самом испарителе, или в специальном аппарате – регенеративном теплообменнике. Охлажение жидкого холодильного агента паред дросселированием может происходить или в специальном переохладителе, или в самом конденсаторе, или также в регенеративном теплообменнике. В малых хладоновых холодильных машиных торговли и общественного питания как правило используется регенеративный теплообменник. Схема и цикл холодильной машины с регенеративным теплообменником показаны.

 

 

После испарителя насыщенный пар холодильного агента состояния т.1′ направляется в регенеративный теплообменник, где перегревается в процессе 1′ - 1″ за счет теплообмена с теплым жидким холодильным агентом, идущим из конденсатора. Перегретый пар всасывается компрессором, в котором адиабатически сжимается в процессе 1″ - 2″ от давления кипения Ро до давления конденсации Рк. При этом его температура повышается. Сжатый горячий пар подается в конденсатор. где сначала охлаждается до температуры насыщения, а затем конденсируется в общем процессе 2″ - 3′. Образовавшаяся в процессе конденсации жидкость поступает в ренегеративный теплообменник, в котором охлаждается в процессе 3′ - 3″ за счет теплообмена с холодным паром, выходящим из испарителя. Охлажденный жидкий хладагент дросселируется в процессе 3″ - 4″ от давления конденсации Рк до давления кипения Ро. После дросселирования холодильный агент поступает в испаритель, где жидкость кипит в процессе 4″ - 1′, отводя теплоту от охлаждаемой среды. Пар, образовавшийся при кипении, перегревается в регенеративном теплообменнике, всасывается компрессором и цикл повторяется вновь.

Удельная холодопроизводительность цикла: qо3 = h1′ - h4″. Удельная работа цикла lц3 = h2″ - h1″.

Массовый расход холодильного агента где - Qо – полная тепловая нагрузка испарителя (полная холодопроизводительность холодильной машины). Объемный расход хладагента Vа = Gа∙х∙νвс,

где νвс – удельный объем всасываемого пара холодильного агента, м3/кг. Теоретическая потребляемая мощность компрессором Nт = lц3∙Gа. Холодильный коэффициент цикла Степень перегрева пара перед всасыванием в компрессор и охлаждения жидкости перед дросселированием зависит от вида рабочего вещества и конкретных условий работы холодильной машины. Так например для аммиачных машин при среднетемпературном режиме перегрев принимается Δtвс = (5 – 10)°С, для хладоновых Δtвс = (10 – 30)°С. В аммиачных холодильных машинах регенеративный теплообменник не применяется из-за его низкой эффективности. Поэтому в таких машинах имеет место незначительное охлаждение жидкости перед дросселированием Δtохл = (3 –5)°С. В хладоновых особенно малых машинах регенеративный теплообменник обязателен не только для охлаждения, но и для возврата в компрессор масла высокой концентрации (выпаривания жидкого хладагента из маслохладонового раствора). В этом случае состояние жидкого холодильного агента перед дросселированием определяется из теплового баланса регенеративного теплообменника, который имеет вид: qпод = qотв, где qпод – количество подведенной теплоты от теплого жидкого холодильного агента, Дж/кг;

14. Причины перехода к многоступенчатому сжатию. При снижении температуры кипения холодильного агента в испарителе То соответственно уменьшается и давление кипения Ро. Также при повышении температуры конденсации Тк увеличивается давление конденсации Ро. Снижение давления кипения и повышение давления конденсации вызывает увеличение степени повышения давлений π = Рко. Возрастание степени повышения давлений π приводит к следующим отрицательным явлениям:1.Повышается температура нагнетания в компрессоре, которая может превысить предельно допустимые значения. Допустимые температуры нагнетания для аммиачных поршневых компрессоров 160 оС, для хладоновых – 130 оС. При более высоких температурах в компрессоре может произойти разложение холодильного агента и масла, ухудшение смазывающей способности масла и его самовоспламенение.2.Возрастают необратимые потери при дросселировании, в результате чего уменьшается удельная холодопроизводительность цикла, а значит и полная холодопроизводительность всей холодильной машины.3.В испаритель поступает большее количество пара и меньше жидкого холодильного агента, а теплоотдача от пара в десятки раз хуже, чем от жидкости. Это приводит к снижению интенсивности теплообмена в аппарате.4.Увеличивается удельная работа цикла, что вызывает повышение потребляемой мощности компрессора при том же массовом расходе холодильного агента.5.Ухудшаются все объемные и энергетические коэффициенты компрессора, что ведет к снижению производительности и увеличению потребляемой мощности компрессора.6.На узлы и детали компрессора воздействуют более высокие силы. Однако все узлы и детали имеют определенный предел прочности. Схема и цикл с промежуточным охладителем и однократным дросселированием. Двухступенчатая холодильная машина. включает в себя компрессор низкого давления, компрессор высокого давления, промежуточный охладитель, конденсатор,испаритель и дроссельное устройство. Перегретый пар холодильного агента, выходящий из испарителя, поступает на всасывание в компрессор низкого давления. В компрессоре пар адиабатически сжимается в процессе 1-2 от давления кипения Ро до промежуточного давления Рпр. При этом затрачивается работа сжатия lсн и температура пара повышается до температуры Т2. После ступени низкого давления сжатый горячий пар направляется в промежуточный охладитель, где охлаждается при постоянном давлении Рпр в процессе 2-3 за счет теплообмена с внешней охлаждающей средой с отводом теплоты промежуточного охлаждения qп.о. В качестве охлаждающей среды в охладителе как правило используется тот же источник охлаждения, что и для конденсатора (вода или воздух). Поэтому температура охлажденного пара после промежуточного охладителя близка к температуре конденсации, т.е. Т3 ≈ Тк. Далее охлажденный пар всасывается компрессором высокого давления, в котором адиабатически сжимается в процессе 3-4 от промежуточного давления Рпр до давления конденсации Рк с затратой работы lсв. Затем сжатый пар поступает в конденсатор, где охлаждается и конденсируется при постоянном давлении в процессе 4-5, отдавая теплоту конденсации qк внешней охлаждающей среде. Образовавшаяся жидкость из конденсатора направляется к дроссельному устройству и дросселируется в нем при постоянной энтальпии в процессе 5-6 от давления конденсации Рк до давления кипения Ро. После дросселирования холодильный агент поступает в испаритель, где жидкость кипит при постоянном давлении Ро в процессе 6-1′ за счет подвода теплоты qoот охлаждаемой среды. Пар, образовавшийся при кипении, перегревается в процессе 1′-1, всасывается компрессором низкого давления и цикл повторяется снова.Количество теплоты, подведенной к 1 кг холодильного агента в испарителе или удельная холодопроизводительность цикла равна.qo = h1′ - h6,где qо – удельная холодопроизводительность цикла, Дж/кг;h6, h1′ - энтальпия холодильного агента на входе и выходе из испарителя, Дж/кг.Количество теплоты, отведенной от 1 кг холодильного агента в конденсаторе или удельная теплота конденсации qк, Дж/кг рассчитывается по формуле:qк = h4 – h5,где h4 и h5 – энтальпия холодильного агента на входе и выходе из конденсатора, Дж/кг.Удельные работы сжатия в компрессоре низкого давления и в компрессоре высокого давления определяются так:lсн = h2 – h1,lсв = h4 – h3, где h1 и h2 – энтальпия пара хладагента на входе и выходе их компрессор низкого давления, Дж/кг;h3, h4 – энтальпия пара хладагента на входе и выходе из компрессора высокого давления, Дж/кг.Особенностью данного цикла является то, что компрессоры низкого и высокого давления имеют одинаковую массовую производительность.Gа = Gан = Gав =.Q0/q0 Объемный расход в ступенях низкого и высокого давлений рассчитываются так:Vан = νвсн • Gан = νвсн • Gа, Vав = νвсв • Gав = νвсв • Gа, где νвсн, νвсв – удельный объем пара хладагента на всасывании в ступени низкого и высокого давлений, м3/кг. , примерно в 2÷3 раза.Теоретические мощности компрессоров низкого и высокого давлений равны:Nтн = lсн • Gан = lсн • Gа, Nтв = lсв • Gав = lсв • Gа.Общая потребляемая теоретическая мощность находится как сумма мощностей ступеней низкого и высокого давлений:Nт = Nтн + Nтв = lсн • Gан + lсв • Gсв = (lсн + lсв) • Gа.Термодинамическая эффективность цикла оценивается теоретическим холодильным коэффициентом εт . Схема и цикл с полным промежуточным охлаждением и однократным дросселированием. В схему холодильной машиныдля промежуточного охлаждения включен специальный промежуточный сосуд со змеевиком. Перегретый пар холодильного агента после испарителя поступает на всасывание в ступень низкого давления, где сжимается в процессе 1 – 2 от давления кипения Ро до промежуточного давления Рпр. Сжатый пар из ступени низкого давления направляется в промежуточный охладитель, где охлаждается в процессе 2 – 3 внешней охлаждающей средой (водой или воздухом) до температуры, близкой к температуре конденсации, т.е. Т3 ≈ Тк. Затем предварительно охлажденный пар подается по трубопроводу в нижнюю часть промежуточного сосуда под слой жидкого холодильного агента, температура которой равна промежуточной температуре Тпр. Пузырьки пара поднимаются вверх (барбатируются) сквозь толщу жидкости и одновременно охлаждаются в процессе 3 – 4 за счет тепломассообмена с жидким холодильным агентом. Теоретически считается, что при этом происходит идеальный теплообмен, в результате которого пар хладагента охлаждается до промежуточной температуры, т.е. Т4 = Тпр. После промсосуда охлажденный пар всасывается ступенью высокого давления, где сжимается в процессе 4 – 5 от промежуточного давления Рпр до давления конденсации Рк. Сжатый горячий пар из ступени высокого давления поступает в конденсатор, в котором сначала охлаждается а потом конденсируется в процессе 5 – 6 при постоянном давлении конденсации Рк. Образовавшаяся жидкость перед промсосудом делится на два потока. Меньшая часть жидкости дросселируется во вспомогательном дроссельном устройстве в процессе 6 – 7 и поступает в промежуточный сосуд для пополнения и поддержания в нем постоянного уровня жидкого холодильного агента. Основной поток проходит по змеевику промежуточного сосуда и охлаждается в процессе 6 – 8 за счет теплообмена с жидким холодильным агентом, который находится в промсосуде. Температура охлажденной жидкости, выходящей из змеевика промсосуда, на (2-3) оqо = h1' – h9.Удельная тепловая нагрузка конденсатора:qк = h5 – h6.Удельная работа сжатия в ступенях низкого и высокого давления:lс.н = h2 – h1,lс.в = h5 - h4.

Массовая производительность ступени низкого давления: Массовая производительность ступени высокого давления Gа.в находится из теплового баланса промежуточного сосуда, который имеет вид: ;Тогда имеем: Полный тепловой поток в конденсаторе: Теоретическая потребляемая мощность в низкой и высокой ступенях сжатия: Общая потребляемая мощность в ступенях низкого и высокого давлений:Nт = Nт.н + Nт.в Теоретический холодильный коэффициент:

Схема и цикл с неполным промежуточным охлаждением и двукратным дросселированием.

 


 

15 Трехступенчатые холодильные машины применяются для получения температур порядка (-60 ÷ -80)оС(сухого льда). Такая машина работает с трехкратным дросселированием и полным промежуточным охлаждением..

Описание аналогично двух ступенчатой машине только на 1 ступень больше.

 

При заданных значениях температуры кипения То и температуры конденсации Тк промежуточные давления находятся как для идеального рабочего вещества.

Тепловой расчёт цикла

Qк = qк • Gа1 = (h7 – h8) • Gа3.

 


 

16 Каскадные холодильные машины.Схема и цикл каскадных холодильных машин В многоступенчатых холодильных машинах объемная производительность компрессора нижней ступени в несколько раз больше объемной производительности компрессора верхней ступени. Поэтому компрессоры более низкой ступени сжатия имеют большие массогабаритные показатели и потребляемую мощность, чем компрессоры верхней ступени. Чем ниже температура кипения, тем эти различия более выражены. Например, в трехступенчатой аммиачной холодильной машине объемная производительность нижней ступени в пять раз больше, чем в верхней ступени, а следовательно, в пять раз больше массогабаритные показатели и потребляемая мощность нижней ступени. Для получения низких температур порядка – 60 - – 90 оС наиболее целесообразным является использование каскадных холодильных машин. Каскадными называются холодильные машины, состоящие из отдельных, связанных между собой, холодильных машин. Общим элементом отдельных каскадов является испаритель-конденсатор. Для верхнего каскада он является испарителем, для нижнего – конденсатором. В каждом каскаде циркулирует свой холодильный агент. Каскадная холодильная машина может состоять из двух или нескольких каскадов. Каждый каскад представляет собой одноступенчатую или многоступенчатую холодильную машину. Простейшая каскадная холодильная машина состоит из двух одноступенчатых холодильных машин (схему и цикл см. рисунок.5.8.).В испарителе нижнего каскада кипит низкотемпературный холодильный агент в процессе 4-1' за счет подвода теплоты от охлаждаемой среды qо. Образовавшийся пар всасывается компрессором нижнего каскада, в котором сжимается в процессе 1-2 от давления кипения нижнего каскада Рон до давления конденсации нижнего каскада Ркн с затратой работы сжатия lсн. После компрессора сжатый пар хладагента нижнего каскада поступает в конденсатор-испаритель, где конденсируется в







Дата добавления: 2015-09-04; просмотров: 3341. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия