Студопедия — Для того чтобы можно было пользоваться готовой таблицей, преобразуем двойное неравенство
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Для того чтобы можно было пользоваться готовой таблицей, преобразуем двойное неравенство






s—б < о < s + 6 в равносильное неравенство

s (1 — б/s) < а < s (1 + б/s).

Положив б!s=tq, получим

s(l— q) < a <s (1 + q). (*)

Остается найти q. С этой целью введем в рассмотрение случайную величину «хи»:

x = (S/a) Vn— 1,

где п —объем выборки.

Как было указано [см. § 16, пояснение, соотношение (***)], величина Sa(n—1)/аа распределена по закону х* с п —1 степенями свободы, поэтому квадратный корень из нее обозначают через %.

Плотность распределения % имеет вид (см. пояснение в конце параграфа)



(**)

Это распределение не зависит от оцениваемого параметра а, а зависит лишь от объема выборки п.

Преобразуем неравенство (*) так, чтобы оно приняло вид %1 < % < %2- Вероятность этого неравенства (см. гл. XI, § 2) равна заданной вероятности у, т. е.

j R(X, n) dy^ — y.

Предполагая, что q < 1, перепишем неравенство (*) так:

S(l+0 < a < S(1 — q)'

Умножив все члены неравенства на S п —1, получим

Или

Вероятность того, что это неравенство, а следовательно, и равносильное ему неравенство (*) будет осуществлено, равна

vn- l/(l - q )


Из этого уравнения можно по заданным пну найти q. Практически для отыскания q пользуются таблицей при­ложения 4.

Вычислив по выборке s и найдя по таблице q, полу­чим искомый доверительный интервал (*), покрывающий а с заданной надежностью у, т. е. интервал

s(l— q) <а< s(l +?).

Пример 1. Количественный признак X генеральной совокупности распределен нормально. По выборке объема п = 25 найдено «исправ­ленное» среднее квадратическое отклонение s = 0,8. Найти доверитель­ный интервал, покрывающий генеральное среднее квадратическое отклонение а с надежностью 0,95.

Решен'ие. По таблице приложения 4 по данным у = 0,95 и я = 25 найдем?*=0,32.

Искомый доверительный интервал (*) таков:

0,8 (1—0,32) < а < 0,8 (1 + 0,32), или 0,544 < с < 1,056.

Замечание. Выше предполагалось, что q < I. Если q > 1, то неравенство (*) примет вид (учитывая, что а > 0)

0 < а < s (1-Н), или (после преобразований, аналогичных случаю q < 1)

Уп — 1/(1 +?) < % < оо.

Следовательно, значения q > 1 могут быть найдены из уравнения

ОО

$ Я(х. n)d% = у.

vim/u+Q)

Практически для отыскания значений q > 1, соответствующих различным заданным п и у, пользуются таблицей приложения 4.

Пример 2. Количественный признак X генеральной совокупности распределен нормально. По выборке объема п=10 найдено «исправ­ленное» среднее квадратическое отклонение s = 0,16. Найти довери­тельный интервал, покрывающий генеральное среднее квадратическое отклонение с с надежностью 0,999.

Решение. По таблице приложения 4 по данным у = 0,999 и л=10 найдем <7=1,80 (q > 1). Искомый доверительный интервал таков:

< а < 0,16(1 + 1,80), или 0 < а < 0,448.

Пояснение. Покажем, что плотность распределе­ния х имеет вид (**).

Если случайная величина X распределена по закону X * с k — n — 1 степенями свободы, то ее плотность рас­пределения (см. гл. XII, § 13)

х[к/ я) —1 е—дс/я

или после подстановки k = n —1 /<*> =

Воспользуемся формулой (см. гл. XII, § 10)

Я (У) = / (у)] (У)|,

чтобы найти распределение функции х=Ф (X)=V~X (х>0). Отсюда обратная функция

* = ^ (X) = X2 и -ф' (х) = 2х- Так как % > 0, то | я|э' (х) | = 2%, следовательно,

а)/2 _-*•/а

8(%)~f И>(х)]■ IЧ>' (х)I ==■ У,—1\"; * 2Х-

2<n-i)/a г

Выполнив элементарные преобразования и изменив обозначения (g(x)* заменим на R п)), окончательно получим

vn-2 -- Х*/Я

Жх. «)-—х—-

2<П- *)/2 р







Дата добавления: 2015-09-06; просмотров: 551. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Седалищно-прямокишечная ямка Седалищно-прямокишечная (анальная) ямка, fossa ischiorectalis (ischioanalis) – это парное углубление в области промежности, находящееся по бокам от конечного отдела прямой кишки и седалищных бугров, заполненное жировой клетчаткой, сосудами, нервами и...

Основные структурные физиотерапевтические подразделения Физиотерапевтическое подразделение является одним из структурных подразделений лечебно-профилактического учреждения, которое предназначено для оказания физиотерапевтической помощи...

Почему важны муниципальные выборы? Туристическая фирма оставляет за собой право, в случае причин непреодолимого характера, вносить некоторые изменения в программу тура без уменьшения общего объема и качества услуг, в том числе предоставлять замену отеля на равнозначный...

Измерение следующих дефектов: ползун, выщербина, неравномерный прокат, равномерный прокат, кольцевая выработка, откол обода колеса, тонкий гребень, протёртость средней части оси Величину проката определяют с помощью вертикального движка 2 сухаря 3 шаблона 1 по кругу катания...

Неисправности автосцепки, с которыми запрещается постановка вагонов в поезд. Причины саморасцепов ЗАПРЕЩАЕТСЯ: постановка в поезда и следование в них вагонов, у которых автосцепное устройство имеет хотя бы одну из следующих неисправностей: - трещину в корпусе автосцепки, излом деталей механизма...

Понятие метода в психологии. Классификация методов психологии и их характеристика Метод – это путь, способ познания, посредством которого познается предмет науки (С...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия