Студопедия — Основы построения математических моделей на микроуровне
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основы построения математических моделей на микроуровне






Для построения математических моделей технических объ­ектов с распределенными параметрами используют фундамен­тальные физические законы. К ним относятся, прежде всего, за­коны сохранения (массы, энергии, импульса).

Общая формулировка закона сохранения: изменение во вре­мени некоторой субстанции в элементарном объеме равно сумме притока-стока этой субстанции через его поверхность с учетом скорости генерации или уничтожения субстанции в этом объеме.

Уравнение, соответствующее данной формулировке, имеет вид

(6.1)

где φ – фазовая переменная (координата), выражающая субстан­цию; – вектор плотности потока фазовой переменной; – дивергенция вектора ; G – скорость генерации или уничтожения субстанции.

У трехмерного технического объекта вектор состоит из трех составляющих, направленных параллельно осям декартовой системы координат х, у, z. Дивергенция век­тора – скалярная величина, определяемая выражением

(6.2)

Дивергенция вектора плотности потока характеризует сум­му притока-стока субстанции через поверхность элементарного объема. В качестве субстанции в различных физических законах выступают: масса, энергия, импульс и др.

Уравнение закона сохранения массы

(6.3)

где ρ – плотность массы, кг/м3; – вектор плотности потока массы:

(6.4)

– вектор скорости переноса массы.

Уравнение (6.3) в гидроаэродинамике называют уравнением неразрывности.

В одномерном случае, когда скорость направлена лишь вдоль оси х, уравнение (6.3) имеет вид

(6.5)

Плотность потока массы измеряется в кг/(м2∙с). Из уравнения неразрывности (6.5) следует частный случай стационарного () одномерного течения по оси x в канале переменного сечения:

, откуда ,

где G, кг/c – массовый секундный расход в канале площадью поперечного сечения f. Из последнего уравнения следует постоянство расхода при стационарном течении в канале

,

а при течении несжимаемой среды (r=const) следует обратно пропорциональная зависимость между скоростью течения и площадью поперечного сечения канала: скорость возрастает в сужающихся и падает в расширяющихся участках канала.

Уравнение закона сохранения энергии

(6.6)

где Е = е + v2/2 ­– полная энергия единицы массы; е – внутренняя энергия единицы массы; ρЕ – энергия единицы объема Дж/м3; – вектор плотности потока энергии; GЕ – скорость генерации или поглощения энергии в единице объема, Дж/(м3∙с).

В одномерном случае поток энергии направлен только вдоль оси х, тогда JE=JEx, а уравнение (6.6) принимает вид

(6.7)

Плотность потока энергии измеряется в Вт/м2.

Уравнение закона сохранения импульса ис­пользуют при моделировании движения потока жидкости (газа). Для потока идеальной жидкости (без учета сил трения, обусловленных вязкостью) уравнение имеет вид

(6.8)

где – вектор импульса единицы объема жидко­сти; р – давление жидкости; grad р – градиент давления.

Градиентом называют векторную функцию скалярного ар­гумента. Компонентами вектора градиента являются частные производные аргумента по пространственным координатам. Гра­диент давления

.

Для одномерного потока жидкости из уравнения (6.8) получаем

(6.9)

При учете сил трения () и массовых сил (тяжести) уравнение закона со­хранения импульса для несжимаемой среды (ρ=сonst) имеет вид

(6.10)

где g – ускорение свободного падения; η – динамическая вязкость Па∙с; – оператор Лапласа: .

Уравнение (6.10) называют уравнением Навье–Стокса. Для одномерного потока жидкости, движущейся в направлении оси x при поперечной силе трения (vx=vx(y)), это уравнение имеет вид:

(6.11)

где gx проекция вектора на ось x.

 







Дата добавления: 2015-09-07; просмотров: 490. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Методы анализа финансово-хозяйственной деятельности предприятия   Содержанием анализа финансово-хозяйственной деятельности предприятия является глубокое и всестороннее изучение экономической информации о функционировании анализируемого субъекта хозяйствования с целью принятия оптимальных управленческих...

Образование соседних чисел Фрагмент: Программная задача: показать образование числа 4 и числа 3 друг из друга...

Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2024 год . (0.007 сек.) русская версия | украинская версия