Студопедия — Теория теста
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Теория теста






 

Классическая теория теста лежит в основе современной дифференциальной психометрики.

Описание оснований этой теории содержится во многих учебниках, пособиях, практических руководствах, научных монографиях. Количество изданных учебников, излагающих эмпирико-статистическую теорию теста, особенно выросло за последние 5-7 лет. Вместе с тем в учебнике, посвященном методам психологического исследования, нельзя хотя бы вкратце не упомянуть основные положения теории психологического тестирования.

Конструирование тестов для изменения психологических свойств и состояний основано на шкале интервалов. Измеряемое психическое свойство считается линейным и одномерным. Предполагается также, что распределение совокупности людей, обладающих данным свойством, описывается кривой нормального распределения.

В основе тестирования лежит классическая теория погрешности измерений; она полностью заимствована из физики. Считается, что тест — такой же измерительный прибор, как вольтметр, термометр или барометр, и результаты, которые он показывает, зависят от величины свойства у испытуемого, а также от самой процедуры измерения («качества» прибора, действий экспериментатора, внешних помех и т. д.). Любое свойство личности имеет «истинный» показатель, а показания по тесту отклоняются от истинного на величину случайной погрешности. На показания теста влияет и «систематическая» погрешность, но она сводится к прибавлению (вычитанию) константы к «истинной» величине параметра, что для интервальной шкалы значения не имеет.

Если тест проводить много раз, то среднее будет характеристикой «истинной» величины параметра. Отсюда выводится понятие ретестовой надежности: чем теснее коррелируют результаты начального и повторного проведения теста, тем он надежнее. Стандартная погрешность измерения:

sт — стандартное отклонение, rit— коэффициент корреляции тест—ретест.

Предполагается, что существует множество заданий, которые могут репрезентировать измеряемое свойство. Тест есть лишь выборка заданий из их генеральной совокупности. В идеале можно создать сколько угодно эквивалентных форм теста. Отсюда — определение надежности теста методами параллельных форм и расщепление его на эквивалентные равные части.

Задания теста должны измерять «истинное» значение свойства. Все задания одинаково скоррелированы друг с другом. Корреляция задания с истинным показателем:

где rit — корреляция i-го задания с истинным показателем t,

rij — средняя корреляция i-го задания с другими показателями.

 

Поскольку в реальном монометрическом тесте число заданий ограничено (не более 100), то оценка надежности теста всегда приблизительна.

Так, определяемая надежность теста связана с однородностью, которая выражается в корреляциях между заданиями. Надежность возрастает с увеличением одномерности теста и числа его заданий, причем довольно быстро. Стандартная надежность 0,02 соответствует тесту длиной в 10 заданий, а при 30 заданиях она равна 0,007.

Оценка стандартной надежности:

где srij — стандартная погрешность оценивания rij,

sij — стандартное отклонение корреляций заданий в тесте,

k — число заданий в тесте.

 

Для оценок надежности используется ряд показателей.

Наиболее известна формула Кронбаха:

где k — число заданий в тесте,

Ss2i — сумма дисперсий заданий,

s2y — дисперсия для всего теста.

 

Для определения надежности методом расщепления используется формула Спирмена—Брауна.

В принципе классическая теория теста касается лишь проблемы надежности. Вся она базируется на том, что результаты выполнения разных заданий можно суммировать с учетом весовых коэффициентов.

Так получается «сырой» балл

Y = S axi + с,

где xi — результат выполнения i - гозадания,

а — весовой коэффициент ответа,

с — произвольная константа.

 

По поводу того, откуда возникают «ответы», в классической теории не говорится ни слова.

Несмотря на то, что проблеме валидности в классической теории теста уделяется много внимания, теоретически она никак не решается. Приоритет отдан надежности, что и выражено в правиле: валидность теста не может быть больше его надежности.

Валидность означает пригодность теста измерять то свойство, для измерения которого он предназначен. Следовательно, чем больше на результат выполнения теста или отдельного задания влияет измеряемое свойство и чем меньше — другие переменные (в том числе внешние), тем тест валидней и, добавим, надежнее, поскольку влияние помех на деятельность испытуемого, измеряемую валидным тестом, минимально.

Но это противоречит классической теории теста, которая основана не на деятельностном подходе к измерению психических свойств, а на бихевиористской парадигме: стимул—ответ. Если же рассматривать тестирование как активное порождение испытуемым ответов на задания, то надежность теста будет функцией, производной от валидности.

Тест валиден (и надежен), если на его результаты влияет лишь измеряемое свойство.

Тест невалиден (и ненадежен), если результаты тестирования определяются влиянием нерелевантных переменных.

Каким же образом определяется валидность? Все многочисленные способы доказательства валидности теста называются разными ее видами.

1. Очевидная валидность. Тест считается валидным, если у испытуемого скла
дывается впечатление, что он измеряет то, что должен измерять.

2. Конкретная валидность, или конвергентная—дивергентная валидность. Тест должен хорошо коррелировать с тестами, измеряющими конкретное свойство либо близкое ему по содержанию, и иметь низкие корреляции с тестами, измеряющими заведомо иные свойства.

3. Прогностическая валидность. Тест должен коррелировать с отдаленными по времени внешними критериями: измерение интеллекта в детстве должно предсказывать будущие профессиональные успехи.

4. Содержательная валидность. Применяется для тестов достижений: тест должен охватывать всю область изучаемого поведения.

5. Конструктная валидность. Предполагает:

а) полное описание измеряемой переменной;

б) выдвижение системы гипотез о связях ее с другими переменными;

в) эмпирическое подтверждение (неопровержение) этих гипотез.

С теоретической точки зрения, единственным способом установления «внутренней» валидности теста и отдельных заданий является метод факторного анализа (и аналогичные), позволяющий:

а) выявлять латентные свойства и вычислять значение «факторных нагрузок» — коэффициенты детерминации свойств тех или иных поведенческих признаков;

б) определять меру влияния каждого латентного свойства на результаты тестирования.

К сожалению, в классической теории теста не выявлены причинные связи факторных нагрузок и надежности теста.

Дискриминативность задания является еще одним параметром, внутренне присущим тесту. Тест должен хорошо «различать» испытуемых с разными уровнями выраженности свойства. Считается, что больше 9-10 градаций использовать не стоит.

Тестовые нормы, полученные в ходе стандартизации, представляют собой систему шкал с характеристиками распределения тестового балла для различных выборок. Они не являются «внутренним» свойством теста, а лишь облегчают его практическое применение.

6.5 Стохастическая теория тестов (IRT)

 

Наиболее общая теория конструирования тестов, опирающаяся на теорию измерения, — Item Response Theory (IRT). Она основывается на теории латентно-структурного анализа (ЛСА), созданной П. Лазарсфельдом и его последователями.

Латентно-структурный анализ создан для измерения латентных (в том числе психических) свойств личности. Он является одним из вариантов многомерного анализа данных, к которым принадлежат факторный анализ в его различных модификациях, многомерное шкалирование, кластерный анализ и др.

Теория измерения латентных черт предполагает, что:

—Существует одномерный континуум свойства — латентной переменной (х); на этом континууме происходит вероятностное распределение индивидов с определенной плотностью f(х).

—Существует вероятностная зависимость ответа испытуемого на задачу (пункт теста) от уровня его психического свойства, которая называется характеристикой кривой пункта. Если ответ имеет две градации («да — нет», «верно — неверно»), то эта функция есть вероятность ответа, зависящая от места, занимаемого индивидом на континууме (x).

3. Ответы испытуемого не зависят друг от друга, а связаны только через латентную черту. Вероятность того, что, выполняя тест, испытуемый даст определенную последовательность ответов, равна произведению вероятностей ответов на отдельные задания.

Конкретные модели ЛСА, применяемые для анализа эмпирических данных, основаны на дополнительных допущениях о плотности распределения индивидов на латентном континууме или о форме функциональной связи уровня выраженности свойства у испытуемого и ответа на пункт теста.

В модели латентного класса функция плотности распределения индивидов является точечно-дискретной: все индивиды относятся к разным непересекающимся классам. Измерение производится при помощи номинальной шкалы.

В модели латентной дистанции постулируется, что вероятность ответа индивида на пункт текста является мультипликативной функцией от параметров задачи и величины свойства:

где Рi(х) — вероятность ответа «да» на i-й пункт,

 

ai — «дифференцирующая сила» задания,

х — величина свойства,

b — «трудность» задания.

Вероятность ответа на пункт теста описывается функцией, изображенной на графике (рис. 6.5).

Fi(x)

Рис. 6.5. Здесь Ft(x) — величина i-го задания, Pi (x) — вероятность oтвета на i-е задание

 

Модель нормальной огивы есть обобщение модели латентной дистанции. В ней вероятность ответа на задание такова:

где Li (х) — плотность нормального распределения.

В логистической модели вероятность ответа на задание описывается следующей зависимостью:

где Li(х) = ai (х –bi), y(х) = еt ( 1 – еt) — логистическая функция распределения.

Логистическая модель используется наиболее широко, так как она специально предназначена для тестов, где свойство измеряется суммированием баллов, полученных за выполнение каждого задания с учетом их весов.

Логистическая функция и функция нормального распределения тесно связаны:

(здесь Ф (х) — кумулятивная функция нормального распределения).

Развитием ЛСА являются различные модификации Item Response Theory. В IRT распределения переменных на оси латентного свойства непрерывны, т. е. модель латентного класса не используется.

База для IRT — это модель латентной дистанции. Предполагается, что и индивидов, и задания можно расположить на одной оси «способность — трудность» или «интенсивность свойства — сила пункта». Каждому испытуемому ставится в соответствие только одно значение латентного параметра («способности»).

В общем виде вероятность ответа зависит от множества свойств испытуемого, но в моделях IRT рассматривается лишь одномерный случай.

Главное отличие IRTor классической теории теста в том, что в ней не ставятся и не решаются фундаментальные проблемы эмпирической валидности и надежности теста: задача априорно соотносится лишь с одним свойством, т. е. тест заранее считается валидным. Вся процедура сводится к получению оценок параметров трудности задания и к измерению «способностей» испытуемых (образованию «характери стических кривых»).

В классической теории теста индивидуальный балл (уровень свойства) считает ся некоторым постоянным значением. В IRT латентный параметр трактуется как непрерывная переменная.

Первичной моделью в IRT стала модель латентной дистанции, предложение? Г. Рашем: [Rasch G., 1980]: разность уровня способности и трудности теста хi - bi. где хi — положение i-го испытуемого на шкале, а bj — положение j-го задания на той же шкале. Расстояние (хi - bi) характеризует отставание способности испытуемого от уровня сложности задания. Если разница велика и отрицательна, то задание не может быть выполнено, так как для данного испытуемого оно слишком сложно. Если же разница велика и положительна, то задание также не информативно, ибо испытуемый заведомо легко и правильно его решит.

Вероятность правильного решения задания (или ответа «да») i-м испытуемым:

.

Вероятность выполнения i-го задания группой испытуемых:

В IRT функции х и f(b) называются функциями выбора пункта. Соответственно первая является характеристической функцией испытуемого, а вторая — характеристической функцией задания.

Считается, что латентные переменные х и b нормально распределены, поэтому для характеристических функций выбирают либо логистическую функцию, либо интегральную функцию нормированного нормального распределения (как мы уже отметили выше, они мало отличаются друг от друга).

Поскольку логистическую функцию проще аналитически задавать, ее используют чаще, чем функцию нормального распределения.

Кроме «свойства» и «силы пункта» (она же — трудность задания) в аналитическую модель IRT могут включаться и другие переменные. Все варианты 1RT классифицируются по числу используемых в них переменных.

Наиболее известны однопараметрическая модель Г. Раша, двухпараметрическая модель А. Бирнбаума и его же трехпараметрическая модель.

В однопараметрической модели Раша предполагается, что ответ испытуемого обусловлен только индивидуальной величиной измеряемого свойства (qi) и «силой» тестового задания (bi). Следовательно, для верного ответа («да»)

и для неверного ответа («нет»)

Наиболее распространена модель Раша с логистической функцией отклика.

Для тестового задания:

Естественно, чем выше уровень свойства (способности), тем вероятнее получить правильный ответ («ключевой» ответ — «да»). Следовательно, функция Рj(q) является монотонно возрастающей.

В точке перегиба характеристической кривой i-го задания теста «способность» равна «трудности задания», следовательно, «вероятность его решения» равна 0,5 (рис. 6.6).

Очевидно, что индивидуальная кривая испытуемого, характеризующая вероятность решить то или иное задание (дать ответ «да»), будет монотонно убывающей функцией (рис. 6.7).

Рис. 6.7

 

В точке на шкале, где «трудность» равна «индивидуальной способности испытуемого», происходит перегиб функции. С ростом «способности» (развитием психологического свойства) кривая сдвигается вправо.

Главной задачей IRT является шкалирование пунктов теста и испытуемых.

Упростим исходную формулу модели, введя параметр V = еqi-bi:

,

.

Шанс на успех i-го испытуемого при решении j-го задания определяется отношением:

 

Если сравнить шансы двух испытуемых решить одно и то же j-е задание, то это отношение будет следующим:

 

Следовательно, разница в успешности задания испытуемыми не зависит от сложности задания и определяется лишь уровнем способности.

Нетрудно заметить, что в модели Раша отношение трудности заданий не зависит от способности испытуемых. Для того чтобы убедиться в этом, достаточно проделать аналогичные простейшие преобразования, сравнивая вероятности ответов группы на два пункта теста, а не вероятности ответов разных испытуемых.

где Pik — вероятность ответа на k -eзадание для i-го испытуемого,

U = еqi-bi, и для неправильного ответа

Для сравнения шансов на успех i-го испытуемого решить задания k и п берем отношение:

Тем самым отношение шансов испытуемого решить два разных задания определяется лишь трудностью этих заданий.

Обратим внимание, что шкала Раша (в теории) является шкалой отношений.

Теперь у нас есть возможность ввести единицу измерения способности (в общем виде — свойства). Если взять натуральный логарифм от еbn-bk или еqi-bi, то получается единица измерения «логит» (термин ввел Г. Раш), которая позволяет измерить и «силу пункта» (трудность задания), и величину свойства (способность испытуемого) в одной шкале.

Эмпирически эта процедура производится cледующим образом. Предполагается, что энные тестирования и значения латентных переменных характеризуются нормальным аспределением. Уровень «способности» испытуемого в «логитах» определяется на шкале интервалов с помощью формулы:

где п — число испытуемых,

р: — доля правильных ответов i-го испытуемого на задания еста,

qt — доля неправильных ответов,

Для первичного определения трудности задания в логитах используют оценку

где п — число заданий,

pt —доля правильных ответов для испытуемых группы на i-е здание,

qi —доля неправильных ответов,

Хотя параметры b и q изменяются от «плюса» до «минуса», то при b < - 6 значения pi близки к единице, т.е. на эти задания практически каждый испытуемый дает правильный («ключевой») ответ. При b > 6 с заданием не сможет справиться ни один испытуемый, точнее — вероятность дать «ключевой» ответ ничтожна.

Рекомендуется рассматривать лишь интервалы от -3 до +3 как для b (трудности), так и для q (способность).

Второй этап шкалирования испытуемых и заданий сводится к тому, что шкалы треобразуются в единую шкалу путем «уничтожения» влияния трудности задания на результат индивидов. И к тому же элиминируется влияние индивидуальных способностей на решение заданий различной трудности.

Для шкалы испытуемых:

b — среднее значение логитов трудности заданий теста,

W — стандартное отклонение распределения начальных значений параметра b,

п — число испытуемых.

 

Для шкалы заданий:

q̅ — среднее значение логитов уровней способностей,

V — стандартное отклонение распределения начальных значений «способности»,

п — число заданий в тесте.

 

Эти эмпирические оценки используются в качестве окончательных характеристик измеряемого свойства и самого измерительного инструмента (заданий теста).

Если перед исследователем стоит задача конструирования теста, то он приступает к получению характеристических кривых заданий теста. Характеристические кривые могут накладываться одна на другую. В этом случае избыточные задания выбраковываются. На определенных участках оси q(«способность») характеристические кривые заданий могут вовсе отсутствовать. Тогда разработчик теста должен добавить задания недостающей трудности, чтобы равномерно заполнить ими весь интервал шкалы логитов от - 6 до +6. Заданий средней трудности должно быть больше, чем на «краях» распределения, чтобы тест обладал необходимой дифференцирующей (различающей) силой.

Вся процедура эмпирической проверки теста повторяется несколько раз, пока разработчик не останется доволен результатом работы. Естественно, чем больше заданий, различающихся по уровню трудности, предложил разработчик для первичного варианта теста, тем меньше итераций он будет проводить.

Главным недостатком модели Раша теоретики считают пренебрежение «крутизной» характеристических кривых: «крутизна» их полагается одинаковой.

Задания с более «крутыми» характеристическими кривыми позволяют лучше «различать» испытуемых (особенно в среднем диапазоне шкалы способностей), чем задания с более «пологими» кривыми.

Параметр, определяющий «крутизну» характеристических кривых заданий, называют дифференцирующей силой задания. Он используется в двухпараметрической модели Бирнбаума.

Модель Бирнбаума аналитически описывается формулой

Параметр ajопределяет «крутизну» кривой в точке ее перегиба; его значение прямо пропорционально тангенсу угла наклона касательной к характеристической кривой задания теста в точке q= bj(рис. 6.8).

 

 

Интервал изменения параметра ajот - ¥ до + ¥. Если значения aблизки к 0 (для заданий разной трудности), то испытуемые, различающиеся по уровню выраженности свойства, равновероятно дают «ключевой» ответ на это задание теста. При выполнении такого задания у испытуемых не обнаруживается различий.

Парадоксальный вариант получаем при a < 0. В этом случае более способные испытуемые отвечают правильно с меньшей вероятностью, а менее способные — с большей вероятностью. Опытные психодиагносты знают, что такие случаи встречаются в практике тестирования очень часто.

Ф. М. Лорд и М. Новик в своей классической работе [Lord F. M.,NovikM., 1968] приводят формулы оценки параметра a. При a = 1 задание соответствует однопараметрической модели Раша. Практики рекомендуют использовать задания, характеризующие значение aвинтервале от 0,5 до 3.

Все психологические тесты можно разделить в зависимости от формального типа ответов испытуемого на «открытые» и «закрытые». В тестах с «открытым» ответом, к которым относятся тест WAIS Д. Векслера или методика дополнения предложений, испытуемый сам порождает ответ. Тесты с «закрытыми» заданиями содержат варианты ответов. Испытуемый может выбрать один или несколько вариантов из предлагаемого множества. В тестах способностей (тест Дж. Равена, GABT и др.) предусмотрено несколько вариантов неправильного решения и один правильный. Испытуемый может применить стратегию угадывания. Вероятность угадывания ответа:

где п — число вариантов.

Результаты эмпирических исследований показали, что относительная ча-стота решения «закрытых» заданий отклоняется от теоретически предсказанных вероятностей двухпараметрической модели Бирнбаума. Чем ниже уровень способностей испытуемого (низкие значения параметра q), тем чаще он прибегает к стратегии угадывания. Аналогично, чем труднее задание, тем больше вероятность того, что испытуемый будет пытаться угадать правильный ответ, а не решать задачу.

Бирнбаум предложил трехпараметрическую модель, которая позволила бы учесть влияние угадывания на результат выполнения теста.

Трехпараметрическая модель Бирнбаума выглядит так:

Соответственно оценка «силы» пункта (трудности задания) в логистической форме модели

Сj характеризует вероятность правильного ответа на задание jв том случае, если испытуемый угадывал ответ, а не решал задание, т. е. при q ® 0. Для заданий с пятью вариантами ответов Сj становится более пологой, так как 0 < С < 1, но при всех С = 0 кривая поднимается над осью qна величину Сj. Тем самым даже самый неспособный испытуемый не может показать нулевой результат. Дифференцирующая сила тестового задания при введении параметра Сj снижается. Из этого следует нетривиальный вывод: тесты с «закрытыми» заданиями (вынужденным выбором ответа) хуже дифференцируют испытуемых по уровням свойства, чем тесты с «открытыми» заданиями.

Модель Бирнбаума не объясняет парадоксального, но встречающегося в практике тестирования феномена: испытуемый может реже выбирать правильный ответ, чем неправильный. Таким образом, частота решения некоторых заданий может соответствовать предсказаниями модели Рj < Сj, тогда как, согласно модели Бирнбаума, в пределе Рj = Сj.

Рассмотрим еще одну модель, которую предложил В. С. Аванесов. Как мы заметили, в IRT не решается проблема валидности: успешность решения задач зависит в моделях IRT только от одного свойства. Иначе говоря, каждое задание теста считается априорно валидным.

Аванесов обратил внимание на это обстоятельство и ввел дополнительный, четвертый, параметр, который можно обозначить как внутреннюю валидность задания. Успешность решения задания определяется не только «основной» способностью но и множеством условий, нерелевантных заданию, однако влияющих на деятельность испытуемого.

Четырехпараметрическая модель представляет, по мнению ряда исследовател лишь теоретический интерес:

где gj— валидность тестового задания.

Если gj > 1, то тест не является абсолютно валидным. Следовательно, вероность решения задания не только определяется теоретически выделенным свойством, но и зависит от других психических особенностей личности.

Бирнбаум считает, что количество информации, обеспеченное j-м заданием теста, при оценивании qj является величиной, обратно пропорциональной стандартной ошибке измерения данного значения qj j -м заданием. Более подробно вычисление информационной функции рассмотрено в работе М. Б. Челышковой [ЧелышковаМ. Б., 1995].

Многие авторы, в частности Пол Клайн [Клайн П., 1994], отмечают, что IRT обладает множеством недостатков. Для того чтобы получить надежную и независимую от испытуемых шкалу свойств, требуется провести тестирование большой выборки (не менее 1000 испытуемых). Тестирование достижений показывает, что существуют значительные расхождения между предсказаниями модели и эмпирическими данными.

В 1978 г. Вуд [цит. по: Клайн П., 1994] доказал, что любые произвольные даннь могут быть приведены в соответствие с моделью Раша. Кроме того, существует очен высокая корреляция шкал Раша с классическими тестовыми шкалами (около 0,90).

Шкалирование, по мнению Раша, способно привести к образованию бессмысленных шкал. Например, попытка применить его модель к опроснику EPQ Айзенка породила смесь шкал N, Е, Р и L.

Главный же недостаток IRT — игнорирование проблемы валидности. В психологической практике не наблюдается случаев, когда ответы на задания теста были быобусловлены лишь одним фактором. Даже при тестировании общего интеллекта модели IRT неприменимы.

Клайн рекомендует использовать модели /ЯГдля коротких тестов с валидными заданиями (факторно простые тесты).

В пособии Клайна «Справочное руководство по конструированию тестов» (Киев, 1994) приведен алгоритм конструирования тестов на основе модели Раша.

В заключение рассмотрим вероятностную модель тестов «уровня» Ф. М. Юсупова [ДружининВ. Н., 1998], аспиранта лаборатории психологии способностей Института психологии РАН. Его модель разработана для тестов с «закрытыми» заданиями (выбором ответов из множества), различающимися по уровню трудности. В «закрытых» тестах испытуемый может применить стратегию «угадывания» ответа Вероятность угадывания

P = 1/m,

где m — число альтернатив.

Сложность тестового задания

W = n/N,

где п — число испытуемых, способных решить задание,

N — общее количество испытуемых в выборке валидизации.

При W < Р невозможно определить, решена задача случайно или закономерно. Предполагается, что биноминальное распределение вероятности успешного выполнения тестового задания при больших N аппроксимируется нормальным.

Должны выполняться следующие условия:

1. Правильный ответ выбирается неслучайно, если:

6. его экспериментально полученная частота больше 1/m;

7. это превышение статистически значимо;

8. оценивать его можно с помощью t-критерия Стьюдента.

2. Все ложные варианты ответов должны выбираться не чаще, чем случайные:

где пj — частота выбора неверного ответа.

Тем самым тестовое задание стимулирует испытуемого к выбору правильного ответа.

3. В тестах «уровня» диапазон изменения показателя сложности 0 £ W £ 1 должен быть уменьшен «слева» на величину W¢, значимо отличающуюся от W, в которой t – tкр (t — критерий Стьюдента). Чем больше вариантов ответов в тесте, тем меньше W ишире область допустимых значений показателя сложности тестового задания. Например, для W = 100, a = 0,05 (tкр = 1,90) и 10 > т > 3 расчет показывает, что уже при т > 6 скорость расширения области значений показателя сложности значимо замедляется. Поэтому рекомендуется выбирать 6-10 вариантов ответа.

В тесте «уровня» число градаций сложности и число заданий связано. Чем точнее оценка свойства, тем больше число градаций. Но это влечет снижение достоверности измерения, так как длина теста (число заданий) ограничена. Уменьшение числа градаций приведет к нивелированию различий между испытуемыми.

Предельно возможное число заданий в тесте выбирается при условии, что различие в уровне их сложности гарантируется с выбранной вероятностью.

Поскольку дисперсия биноминального распределения максимальная в центре т интервала 0 - 1 и уменьшается к периферии до 0, шаг градаций сложности на разных участках этого интервала будет различным: на периферии он должен стремиться нулю.

Удобно принять в качестве шага градации сложности 1/10 интервала. Для a = 0,05, N = 100 получается 7 значений показателя сложности, что при шаге, равном 0,1, гарантирует различение между уровнями с вероятностью 0,9.

Если учесть условие минимизации случайного выбора правильного ответа, т число градаций сложности должно быть еще меньше. Например, при 6 вариантах ответа число заданий разного уровня сложности не может быть больше 6.

Эти выводы верны в том случае, если биноминальное распределение аппроксимируется нормальным распределением. При большом числе испытуемых такаяаппроксимация возможна.

Расчеты показывают, что минимально необходимый объем выборки для апробации тестовых заданий не так уж и велик — 56 человек при достоверности 0,9.

Следовательно, исходя из вероятностной модели теста и не прибегая к допущениям о моделях тестирования, можно рассчитать параметры теста как предельные характеристики, обеспечивающие достоверность измерения.

Вопросы

 

1. Какие основные типы шкалы используются в психологических исследованиях?

2. В чем состоят отличия классической модели теста от теории выбора ответа (IRT)?

1. Что такое «логит»?

2. Каким должно быть число уровней трудности заданий в тесте?

3. В каких случаях применяется шкалограммный анализ?







Дата добавления: 2015-09-07; просмотров: 2020. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Механизм действия гормонов а) Цитозольный механизм действия гормонов. По цитозольному механизму действуют гормоны 1 группы...

Гальванического элемента При контакте двух любых фаз на границе их раздела возникает двойной электрический слой (ДЭС), состоящий из равных по величине, но противоположных по знаку электрических зарядов...

Сущность, виды и функции маркетинга персонала Перснал-маркетинг является новым понятием. В мировой практике маркетинга и управления персоналом он выделился в отдельное направление лишь в начале 90-х гг.XX века...

Разработка товарной и ценовой стратегии фирмы на российском рынке хлебопродуктов В начале 1994 г. английская фирма МОНО совместно с бельгийской ПЮРАТОС приняла решение о начале совместного проекта на российском рынке. Эти фирмы ведут деятельность в сопредельных сферах производства хлебопродуктов. МОНО – крупнейший в Великобритании...

Studopedia.info - Студопедия - 2014-2024 год . (0.023 сек.) русская версия | украинская версия