Студопедия — Types and variables
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Types and variables






There are two kinds of types in C#: value types and reference types. Variables of value types directly contain their data whereas variables of reference types store references to their data, the latter being known as objects. With reference types, it is possible for two variables to reference the same object and thus possible for operations on one variable to affect the object referenced by the other variable. With value types, the variables each have their own copy of the data, and it is not possible for operations on one to affect the other (except in the case of ref and out parameter variables).

C#’s value types are further divided into simple types, enum types, struct types, and nullable types, and C#’s reference types are further divided into class types, interface types, array types, and delegate types.

The following table provides an overview of C#’s type system.

 

Category Description
Value types Simple types Signed integral: sbyte, short, int, long
Unsigned integral: byte, ushort, uint, ulong
Unicode characters: char
IEEE floating point: float, double
High-precision decimal: decimal
Boolean: bool
Enum types User-defined types of the form enum E {...}
Struct types User-defined types of the form struct S {...}
Nullable types Extensions of all other value types with a null value
Reference types Class types Ultimate base class of all other types: object
Unicode strings: string
User-defined types of the form class C {...}
Interface types User-defined types of the form interface I {...}
Array types Single- and multi-dimensional, for example, int[] and int[,]
Delegate types User-defined types of the form e.g. delegate int D(...)

 

The eight integral types provide support for 8-bit, 16-bit, 32-bit, and 64-bit values in signed or unsigned form.

The two floating point types, float and double, are represented using the 32-bit single-precision and 64-bit double-precision IEEE 754 formats.

The decimal type is a 128-bit data type suitable for financial and monetary calculations.

C#’s bool type is used to represent boolean values—values that are either true or false.

Character and string processing in C# uses Unicode encoding. The char type represents a UTF-16 code unit, and the string type represents a sequence of UTF-16 code units.

The following table summarizes C#’s numeric types.

 

Category Bits Type Range/Precision
Signed integral   sbyte –128...127
  short –32,768...32,767
  int –2,147,483,648...2,147,483,647
  long –9,223,372,036,854,775,808...9,223,372,036,854,775,807
Unsigned integral   byte 0...255
  ushort 0...65,535
  uint 0...4,294,967,295
  ulong 0...18,446,744,073,709,551,615
Floating point   float 1.5 × 10−45 to 3.4 × 1038, 7-digit precision
  double 5.0 × 10−324 to 1.7 × 10308, 15-digit precision
Decimal   decimal 1.0 × 10−28 to 7.9 × 1028, 28-digit precision

 

C# programs use type declarations to create new types. A type declaration specifies the name and the members of the new type. Five of C#’s categories of types are user-definable: class types, struct types, interface types, enum types, and delegate types.

A class type defines a data structure that contains data members (fields) and function members (methods, properties, and others). Class types support single inheritance and polymorphism, mechanisms whereby derived classes can extend and specialize base classes.

A struct type is similar to a class type in that it represents a structure with data members and function members. However, unlike classes, structs are value types and do not require heap allocation. Struct types do not support user-specified inheritance, and all struct types implicitly inherit from type object.

An interface type defines a contract as a named set of public function members. A class or struct that implements an interface must provide implementations of the interface’s function members. An interface may inherit from multiple base interfaces, and a class or struct may implement multiple interfaces.

A delegate type represents references to methods with a particular parameter list and return type. Delegates make it possible to treat methods as entities that can be assigned to variables and passed as parameters. Delegates are similar to the concept of function pointers found in some other languages, but unlike function pointers, delegates are object-oriented and type-safe.

Class, struct, interface and delegate types all support generics, whereby they can be parameterized with other types.

An enum type is a distinct type with named constants. Every enum type has an underlying type, which must be one of the eight integral types. The set of values of an enum type is the same as the set of values of the underlying type.

C# supports single- and multi-dimensional arrays of any type. Unlike the types listed above, array types do not have to be declared before they can be used. Instead, array types are constructed by following a type name with square brackets. For example, int[] is a single-dimensional array of int, int[,] is a two-dimensional array of int, and int[][] is a single-dimensional array of single-dimensional arrays of int.

Nullable types also do not have to be declared before they can be used. For each non-nullable value type T there is a corresponding nullable type T?, which can hold an additional value null. For instance, int? is a type that can hold any 32 bit integer or the value null.

C#’s type system is unified such that a value of any type can be treated as an object. Every type in C# directly or indirectly derives from the object class type, and object is the ultimate base class of all types. Values of reference types are treated as objects simply by viewing the values as type object. Values of value types are treated as objects by performing boxing and unboxing operations. In the following example, an int value is converted to object and back again to int.

using System;

class Test
{
static void Main() {
int i = 123;
object o = i; // Boxing
int j = (int)o; // Unboxing
}
}

When a value of a value type is converted to type object, an object instance, also called a “box,” is allocated to hold the value, and the value is copied into that box. Conversely, when an object reference is cast to a value type, a check is made that the referenced object is a box of the correct value type, and, if the check succeeds, the value in the box is copied out.

C#’s unified type system effectively means that value types can become objects “on demand.” Because of the unification, general-purpose libraries that use type object can be used with both reference types and value types.

There are several kinds of variables in C#, including fields, array elements, local variables, and parameters. Variables represent storage locations, and every variable has a type that determines what values can be stored in the variable, as shown by the following table.

 

Type of Variable Possible Contents
Non-nullable value type A value of that exact type
Nullable value type A null value or a value of that exact type
object A null reference, a reference to an object of any reference type, or a reference to a boxed value of any value type
Class type A null reference, a reference to an instance of that class type, or a reference to an instance of a class derived from that class type
Interface type A null reference, a reference to an instance of a class type that implements that interface type, or a reference to a boxed value of a value type that implements that interface type
Array type A null reference, a reference to an instance of that array type, or a reference to an instance of a compatible array type
Delegate type A null reference or a reference to an instance of that delegate type

 







Дата добавления: 2015-09-07; просмотров: 447. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Виды и жанры театрализованных представлений   Проживание бронируется и оплачивается слушателями самостоятельно...

Что происходит при встрече с близнецовым пламенем   Если встреча с родственной душой может произойти достаточно спокойно – то встреча с близнецовым пламенем всегда подобна вспышке...

Реостаты и резисторы силовой цепи. Реостаты и резисторы силовой цепи. Резисторы и реостаты предназначены для ограничения тока в электрических цепях. В зависимости от назначения различают пусковые...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит...

Кран машиниста усл. № 394 – назначение и устройство Кран машиниста условный номер 394 предназначен для управления тормозами поезда...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия