Студопедия — Статистичний зміст другого начала термодинаміки
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Статистичний зміст другого начала термодинаміки






Друге начало термодинаміки вказує на необоротність процесу перетворення внутрішньої енергії в механічну, тобто на необоротність перетворення хаотичного руху молекул газу в їх напрямлений рух. Якщо напрямлений рух молекул перетворюється у хаотичний повністю, то зворотний процес малоймовірний. Взагалі можна сказати, що всякий необоротний процес – це такий процес, зворотний до якого малоймовірний.

Якщо говорити про окремі стани термодинамічної системи, то можна відзначити, наприклад, велику ймовірність стану газу з рівномірним розподілом молекул по всьому об’єму. Імовірність стану з нерівномірним розподілом не рівна нулю, але менша від попередньої. В системі, що складається з великого числа частинок, “працюють ” закони математичної статистики. Процеси вирівнювання тиску, температури, густини в ізольованій системі багатьох молекул ведуть систему до найімовірнішого стану – стану термодинамічної рівноваги. При цьому ентропія системи збільшується і прямує до свого максимального значення. Ми підходимо до важливого висновку про те, що друге начало термодинаміки виражає статистичні закономірності, яким підлягає величезна сукупність молекул речовини.

Для конкретного термодинамічного стану (макростану) системи, який задається певними значеннями параметрів p, V, T, неважливо, наприклад, що молекула №1 рухається справа наліво, а молекула №1001 – знизу вверх чи навпаки. Так само стан усієї системи не залежить від того, чи молекула №10 в даний момент часу має швидкість 500м/с, а молекула №2010 – швидкість 550м/с, чи навпаки. Термодинамічна ймовірність стану системи – це кількість способів (комбінацій) розподілу частинок системи за швидкостями і координатами, що відповідають даному макростану цієї системи. Больцман показав, що між ентропією системи і термодинамічною імовірністю її стану існує зв’язок

(k – стала Больцмана). Тут ентропія виступає як міра ймовірності стану системи або як міра невпорядкованості системи.

З огляду на закон зростання ентропії записана формула Больцмана дозволяє так статистично тлумачити другий принцип термодинаміки: термодинамічна ймовірність стану ізольованої системи при всіх процесах, що відбуваються в ній, не може зменшуватися. Математично статистичний зміст 2-го начала записують так:

.

Якщо 1-ше начало термодинаміки є універсальним законом природи (законом збереження і перетворення енергії), то 2-ге начало – статистична закономірність, що годиться лише для системи з величезної, але скінченної кількості молекул.

У системах з незначною кількістю молекул або в безмежних системах просто не реалізуються рівноважні стани. У згаданих випадках можливі значні випадкові відхилення від рівномірного розподілу частинок по об’єму. Тоді густина (чи концентрація молекул) в різних місцях суттєво відрізняється від деякої середньої густини, що відповідає рівноважному стану системи при заданих Т і р. Такі випадкові відхилення фізичних величин від їх середніх значень називаються флуктуаціями цих величин.

У Всесвіті у зв’язку з його безмежністю можливі особливо великі і тривалі флуктуації, що не допускають стану рівноваги. Тому поширювати дію 2-го начала термодинаміки на Всесвіт (як і на вакуум) не можна. Незаконне застосування цього принципу до Всесвіту привело у свій час Клаузіуса до хибного висновку про неминучість вирівнювання температури всіх тіл у ньому і припинення всіх процесів (“теплова смерть” Всесвіту).

 







Дата добавления: 2015-09-07; просмотров: 1218. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Кишечный шов (Ламбера, Альберта, Шмидена, Матешука) Кишечный шов– это способ соединения кишечной стенки. В основе кишечного шва лежит принцип футлярного строения кишечной стенки...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Характерные черты официально-делового стиля Наиболее характерными чертами официально-делового стиля являются: • лаконичность...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия