Студопедия — Факультет ЭМСиТ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Факультет ЭМСиТ






Вариант № 0.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти обшее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 1.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение, удовлетворяющее начальным условиям х0=0, у0=0.

удовлетворяющее начальным условиям х0=0, у0=0, .

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 2.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=p/2, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

 

Вариант № 3.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0= .

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 4.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 5.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

 

Вариант № 6.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0 .

Задание 7. Написать три первых члена ряда по заданному общему члену , определить интервал сходимости ряда и исследовать сходимость ряда на концах интервала.

 

 

Вариант № 7.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение, удовлетворяющее начальным условиям х0=0, у0=0.

удовлетворяющее начальным условиям х0=0, у0=0 .

Задание 7. Написать три первых члена ряда по заданному общему члену , определить интервал сходимости ряда и исследовать сходимость ряда на концах интервала.

 

 

Вариант № 8.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г)) .

 

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=1, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

Вариант № 9.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=1.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 0.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти обшее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 1.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение, удовлетворяющее начальным условиям х0=0, у0=0.

удовлетворяющее начальным условиям х0=0, у0=0, .

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 2.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=p/2, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

 

Вариант № 3.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0= .

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 4.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

Вариант № 5.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

 

 

Вариант № 6.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=0, у0=0 .

Задание 7. Написать три первых члена ряда по заданному общему члену , определить интервал сходимости ряда и исследовать сходимость ряда на концах интервала.

 

 

Вариант № 7.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г) .

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение, удовлетворяющее начальным условиям х0=0, у0=0.

удовлетворяющее начальным условиям х0=0, у0=0 .

Задание 7. Написать три первых члена ряда по заданному общему члену , определить интервал сходимости ряда и исследовать сходимость ряда на концах интервала.

 

 

Вариант № 8.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) ;

д) .

Задание 2. Найти производные заданных функций.

а) ; б) ;

в) ; г)) .

 

Задание 3. Исследовать средствами дифференциального исчисления

функцию и построить ее график.

Задание 4. Найти неопределенные интегралы.

а) ; б) ;

в) ; г) .

Задание 5. Вычислить определенные интегралы по формуле Ньютона-

Лейбница.

а) ; б) .

Задание 6. Найти общее решение дифференциального уравнения

и частное решение,

удовлетворяющее начальным условиям х0=1, у0=0.

Задание 7. Написать три первых члена ряда по заданному общему члену

, определить интервал сходимости ряда и

исследовать сходимость ряда на концах интервала.

Вариант № 9.

Задание 1. Найти пределы функций.

а) ; б) ;

в) ; г) 12Следующая ⇒




Дата добавления: 2015-10-01; просмотров: 596. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Словарная работа в детском саду Словарная работа в детском саду — это планомерное расширение активного словаря детей за счет незнакомых или трудных слов, которое идет одновременно с ознакомлением с окружающей действительностью, воспитанием правильного отношения к окружающему...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия