Студопедия — Задача вращения относительно произвольной оси
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Задача вращения относительно произвольной оси






Вращение относительно произвольной оси также можно реализовать посредством умножения матрицы на вектор, но предварительно эту матрицу надо построить. Предположим, что прямая проходит через начало координат и задана единичным вектором , и требуется выполнить поворот точки на угол относительно нее. Для этого воспользуемся следующим алгоритмом:

1. Совместим прямую с осью посредством поворота системы координат относительно оси на угол , а затем поворота относительно оси на угол .

2. Выполним поворот относительно оси на угол .

3. Выполним повороты системы сначала относительно оси на угол , а затем относительно оси на угол (в обратном порядке по отношению к первым поворотам), тем самым возвращая ее в исходное положение.

Итоговая матрица преобразования, таким образом, является произведением нескольких матриц, а именно

Матрицы являются матрицами преобразования координат при поворотах системы координат, как было показано в предыдущем разделе. Определим сначала угол , который является углом между осью и его проекцией вектора на плоскость . Пусть - длина этой проекции. Тогда , (синус отрицателен, поскольку поворот идет от оси к оси , т.е. в отрицательном направлении). После поворота системы координат новыми координатами вектора будут . Угол - это угол между векторами и , поэтому . Теперь мы можем выписать вид матриц преобразования координат для каждого шага алгоритма, учитывая то, что матрицы преобразования координат при повороте системы координат обратны по отношению к соответствующим матрицам вращения:

Нетрудно убедиться, что последовательное умножение матриц и на вектор дадут в результате вектор , т.е. этот вектор действительно станет осью аппликат.

Остается только выписать окончательный вид матрицы (для сокращения записи введем следующие обозначения: ):

(3.13)

Напомним, что являются направляющими косинусами прямой, относительно которой выполняется поворот. Нетрудно убедиться, что если в качестве осей вращения взять оси координат, то мы в точности получим формулы (3.10).

Вопросы и упражнения

  1. Дайте определение декартовой системы координат.
  2. Что такое вектор?
  3. Какие векторы считаются равными?
  4. Какие векторы называются линейно независимыми?
  5. Как выразить длину вектора, используя операцию скалярного произведения?
  6. Как определить косинус угла между векторами, используя операцию скалярного произведения?
  7. Докажите, что векторное произведение удовлетворяет соотношению

  1. Как из произвольного вектора получить единичный вектор, совпадающий с ним по направлению? (Эта операция называется нормировкой вектора).
  2. Каково максимальное число линейно независимых векторов в пространстве?
  3. Что такое орты?
  4. Как построить параметрическое уравнение прямой, проходящей через две заданные точки плоскости или пространства?
  5. Докажите, что если в формуле (3.7) заменить координаты координатами любой другой точки плоскости, то уравнение будет описывать ту же самую плоскость. Указание: возьмите произвольную точку, удовлетворяющую уравнению (3.7), напишите новое уравнение плоскости и покажите, что любая точка второй плоскости принадлежит первой и наоборот.
  6. В каких случаях луч с плоскостью не пересекаются?
  7. В каких случаях луч пересекает сферу только в одной точке?
  8. Исходя из определения умножения матрицы на вектор, докажите, что для любых двух векторов и любой матрицы справедливо соотношение

  1. Докажите, что для любого вектора , числа и матрицы справедливо соотношение

  1. При каком условии масштабирование сохраняет углы между отрезками?
  2. Какую траекторию описывают точки объекта при повороте?
  3. Вокруг чего осуществляется поворот на плоскости?
  4. Вокруг чего осуществляется поворот в пространстве?
  5. Какие шаги выполняются в алгоритме поворота относительно произвольной оси в пространстве?
  6. Докажите, что если матрица является матрицей поворота, то .







Дата добавления: 2015-10-01; просмотров: 454. Нарушение авторских прав; Мы поможем в написании вашей работы!



Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

Машины и механизмы для нарезки овощей В зависимости от назначения овощерезательные машины подразделяются на две группы: машины для нарезки сырых и вареных овощей...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия