Студопедия — УСЛОВНЫЕ ВЕРОЯТНОСТИ. НЕЗАВИСИМОСТЬ СОБЫТИЙ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

УСЛОВНЫЕ ВЕРОЯТНОСТИ. НЕЗАВИСИМОСТЬ СОБЫТИЙ






 

Условная вероятность Р(В / А) = РA(В) - это вероятность осуществления события В при условии, что событие А уже произошло (причем последнее не является невозможным, т.е. Р(А) > 0). Эту вероятность можно вычислить по формуле

Для краткости эта величина называется “вероятностью события В при условии А”. Заметим, что для величины Р(В / А) выполняются аксиомы I, II, III, и, следовательно, простейшие свойства (см. §6).

Обозначим через Х число очков, выпавших при одном бросании игральной кости. Пусть А = {Х – простое число}, В = {Х – четное число}. Тогда Р(А) = 3/6 = 1/2 (числа 2, 3, 5 - простые, 1, 4, 6 - нет), Р(В) = 3/6 = 1/2, Р(А · В) = 1/6 (простое и четное одновременно число только одно - это 2). Следовательно, Р(В / А) = 1/3, т.е. вероятность того, что выпало четное число очков при условии, что выпало простое число очков, равна 1/3 (среди 3 простых чисел четное - одно); Р(А/В) = 1/3, т.е. вероятность того, что выпало простое число очков при условии, что выпало четное число очков, также равна 1/3 (среди 3 четных чисел простое - одно).

События А и В называют независимыми, если

Р(А · В) = Р(А) · Р(В).

Если одно из событий невозможное (Æ), то в обеих частях стоят нули. Если же Р(А) > 0 и Р(В) > 0, то Р(А / В) = Р(А), Р(В / А) = Р(В).

Для последнего примера Р(А · В) ¹ Р(А) · Р(В), значит, А и В зависимые.

Во многих задачах независимость событий задается по условию задачи (из общих соображений).

 

§8. ВЕРОЯТНОСТЬ НАСТУПЛЕНИЯ ХОТЯ БЫ ОДНОГО СОБЫТИЯ

 

Сложные события выражаются через другие наблюдаемые события с помощью алгебраических операций, описанных в §2. Основные формулы для вычисления вероятностей таких событий:

 

Р() = 1 - Р(А). (2)

 

Р(А · В) = Р(А) · Р(В / А) = Р(В) · Р(А / В), если Р(А) > 0, Р(В) > 0 (формула умножения вероятностей); (3)

 

Р(А + В) = Р(А) + Р(В) - Р(А · В)

(формула сложения вероятностей). (4)

 

Пример 1. Два стрелка независимо друг от друга ведут стрельбу по мишени, причем вероятности попадания при одном выстреле в мишень для них равны p1 = 0,8, p2 = 0,6. Каждый произвел по одному выстрелу. Вычислить вероятность события А = {произойдет ровно одно попадание}.

Рассмотрим события А1 = {первый стрелок попал в мишень} и А2 = {второй стрелок попал в мишень}. Тогда = {первый стрелок промахнулся}, a = {второй стрелок промахнулся}. В мишени окажется ровно одна пробоина в тех случаях, когда либо первый попал, а второй промахнулся, либо первый промахнулся, а второй попал. Поэтому А = А1 · + А2 · . Последние два события несовместны, поэтому сумма их вероятностей равна вероятности их суммы А. События А1 и , а также А2 и попарно независимы, т.е. вероятности произведений этих событий равны соответствующим произведениям вероятностей этих событий. Т.к. Р(А1)=p1=0,8, P(A2)=p2=0,6, то Р() = 1 - p1 = q1 = 0,2, P() = 1 - p2 = q2 = 0,4 и Р(А) = p1q2 + p2q1 = 0,44.

Вероятность наступления “хотя бы одного события” (т.е. суммы нескольких событий) вычисляют по формуле

(5)

Если же эти события попарно независимы, то

 

Пример 2. В продукции предприятия 10% бракованных изделий. Какова вероятность, что среди 4 взятых независимо изделий хотя бы одно бракованное?

Пусть А - интересующее нас событие, А = A1+ A2+ A3+ A4 , где A1 = {первое изделие бракованное}, A2 = {второе изделие бракованное} и т.д. Так как A1, A2, A3, A4 независимы, то и события также независимы. Событие = {среди 4 изделий ни одного бракованного} = , где = {первое изделие не бракованное} и т. д. Так как Р(A1) = Р (A2) = Р (A3) = Р(A4) = 0,1 (=10%), то Р() = (1 - 0,1)4 = 0,94 = 0,6561. Значит, Р(А) = 1 - Р() = 0,3439.

Если изделий не 4, а 2, то вероятность того, что из этих двух изделий хотя бы одно бракованное, можно вычислить с помощью формулы (3), т.е. не переходя к противоположному событию:

P (A1+A2) = P (A1) + P (A2) - P (A) P (A2) = 0,1 + 0,1 - 0,01 = 0,19.

 

§9. ФОРМУЛА ПОЛНОЙ ВЕРОЯТНОСТИ

 

Пусть H1, H2,...,Hn - полная группа несовместных событий (определение см. в §2) и пусть событие А может произойти только с одним из событий Нk. Для такого события А выполняется следующая “формула полной вероятности”

События Hk принято называть гипотезами по отношению к событию А. Вероятности Р(Hk) трактуются как доопытные (априорные) вероятности гипотез.

 

Пример 1. Вероятность попадания в мишень при одном выстреле равна 0,8. Стрелок сделал два выстрела, а затем бросил симметричную монету столько раз, сколько попал в мишень. Какова вероятность, что в результате выпал ровно один “орел”?

Здесь в качестве гипотез рассмотрим события Н1 = {произошло два попадания}, H2 = {произошло одно попадание}, H3 = {произошло два промаха}. Их вероятности Р(Н1) = 0,82 = 0,64, Р(Н2) = 2 · (1 - 0,8) · 0,8 = 0,32 (множитель 2 здесь из-за того, что гипотеза содержит два равновероятных события: “попал - промахнулся” и “промахнулся - попал” - это формула Бернулли при р = 0,8, q = 0,2, n = 2, k = 1 - см. §11), Р(Н3) = (1 - 0,8)2 = 0,04. Сумма вероятностей этих гипотез равна 1, как и должно быть для полной группы. Далее рассмотрим событие А = {выпал ровно один “орел”}. Если произошло событие Н1, то монета бросается дважды. Вероятность того, что при этом выпадет ровно 1 “орел”, равна Р(А/ H1) = 0,5 (либо “орел - решка” с вероятностью 0,25, либо “решка - орел” также с вероятностью 0,25). Если произошло событие Н2, то монета бросается один раз и вероятность выпадения при этом одного “орла” равна Р(А/H2) = 0,5. Если же происходит событие Н3, то монету не бросают и Р(А/H3)= 0. Все данные для формулы полной вероятности получены. Следовательно,

Р(А) = Р(Н1)Р(А/H1) + P(H2)P(A/H2) + P(H3)P(A/H3) = 0,48.

 

Пример 2. В ящике лежат 10 теннисных мячей, в том числе 8 новых и 2 играных. Для игры наудачу выбираются два мяча и после игры возвращаются обратно. Затем для второй игры наудачу извлекаются еще два мяча. Какова вероятность того, что вторая игра будет проводиться новыми мячами?

Здесь удобно задать 3 гипотезы: H1 = {для первой игры взяты 2 новых мяча}, H2 = {для первой игры взяты новый и играный мячи}, Н3 = {для первой игры взяты 2 играных мяча}. Их вероятности вычисляются по формуле классической вероятности (как и в примерах из §4):

; ;

(Проверка: Р(H1) + Р(H2) + Р(H3) = 1).

Событие А = {для второй игры взяты два новых мяча}. В результате осуществления гипотезы H1 в ящике останется 6 новых и 4 играных мяча, поэтому . В результате осуществления гипотезы H2 в ящике будет 7 новых мячей из 10, поэтому . Аналогично, . Таким образом,

Заметим, что в одной и той же задаче могут быть выбраны разные наборы гипотез, скажем, в примере 2 гипотезу H2 можно представить в виде суммы двух: H2 = {первый взятый для первой игры мяч новый, второй - играный}+{первый взятый для первой игры мяч играный, второй - новый} и т. д. Желательно формулировать гипотезы так, чтобы их вероятности, а также и условные вероятности, вычислялись проще.

 

§10. ФОРМУЛА БАЙЕСА

 

В этом параграфе {H1, H2, H3, H4} - по-прежнему, полная группа несовместных событий (гипотез). Если Р(А) > 0, Р(Hk) > 0, то Р(А · Hk) = Р(А) · Р(Hk / А) = Р(Hk) · Р(А / Hk) (см. §§7,8), откуда

-это формула Байеса, в которой Р(А) вычисляют по формуле полной вероятности. Р(Hk / А) - вероятность осуществления гипотезы Hk при условии, что событие А осуществилось. Эту вероятность называют послеопытной или апостериорной. Для ее вычисления рассматривают только те испытания, которые закончились “успехом”, т.е. осуществлением события А. Вероятность Р(Hk / А) выражает “долю” гипотезы Hk для вышеуказанных испытаний.

 

Пример 1. (см. пример 1 из §8).

Два стрелка независимо друг от друга ведут стрельбу по мишени, причем вероятности попадания при одном выстреле в мишень для них равны p1 = 0,8 и p2 = 0,6. Каждый сделал по одному выстрелу, причем в результате в мишени оказалась одна пробоина. Найти вероятность того, что промахнулся второй.

Зададим гипотезы: Н1 = {оба стрелка либо попали, либо промахнулись}, H2 = {попал только первый}, H3 = {попал только второй}. Подсчитаем их вероятности: P(H1) = p1p2 + q1q2 = 0,56, P(H2) = p1q2 = 0,32, P(H3) = q1p2 = 0,12. Сумма их вероятностей равна 1.

Событие А = {в мишени оказалась ровно 1 пробоина} осуществилось, т.е. данная задача на формулу Байеса. Событие {при одной пробоине промахнулся второй}- это гипотеза H2. По формуле Байеса

т. к. Р(А/Н1) = 0, Р(А/Н2) = Р(А/Н3) = 1. Значение Р(А), вычисленное по формуле полной вероятности, совпадает с результатом, вычисленным ранее в §8 другим способом. Итак, в среднем среди каждых 11 исходов, заканчивающихся одним попаданием, 8 соответствуют варианту H2 = {первый попал, второй промахнулся}, а остальные три - H3.

 

Пример 2. (см. пример 2 из §9)

В ящике лежат 10 теннисных мячей, в том числе 8 новых и 2 играных. Для игры наудачу выбираются 2 мяча и после игры возвращаются обратно. Затем для второй игры наудачу извлекаются еще 2 мяча, оказавшиеся новыми. Какова вероятность, что первая игра также проводилась новыми мячами?

Событие А = {для второй игры взяты два новых мяча}, осуществилось. Поэтому задача решается по формуле Байеса. Нас интересует вероятность Р(H1 / А), где, напомним, гипотеза H1 ={для первой игры взяты 2 новых мяча}. Подставим в формулу Байеса вероятности, подсчитанные в §9.

 

Постановки задач, подобных изложенным в §9 и в §10, встретятся при решении задачи №1 из контрольной работы.

 







Дата добавления: 2015-10-01; просмотров: 563. Нарушение авторских прав; Мы поможем в написании вашей работы!



Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия