Студопедия — Дискретный вариационный ряд
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Дискретный вариационный ряд






 

Номер интервала i Среднее значение интервала Относительная частота Выборочная оценка плотности вероятности
  149,5 0,005 0,002
  152,5    
  155,5 0,025 0,008
Окончание таблицы 7
  158,5 0,035 0,012
  161,5 0,105 0,035
  164,5 0,19 0,063
  167,5 0,195 0,065
  170,5 0,19 0,063
  173,5 0,105 0,035
  176,5 0,075 0,025
  179,5 0,04 0,013
  182,5 0,015 0,005
  185,5 0,015 0,005
  188,5 0,005 0,002

 

 
 

Рис.1

 
 

Рис.2

 

На основании полученных выборочных данных необходимо сделать предположение, что изучаемая величина распределена по некоторому определённому закону. Для того чтобы проверить, согласуется ли это предположение с данными наблюдений, вычисляют частоты полученных в наблюдениях значений, т.е. находят теоретически сколько раз величина Х должна была принять каждое из наблюдавшихся значений, если она распределена по предполагаемому закону. Для этого находят выравнивающие (теоретические) частоты по формуле:

(7)

где n – число испытаний,

- вероятность наблюдаемого значения , вычисленная при допущении, что Х имеет предполагаемое распределение.

Эмпирические (полученные из таблицы) и выравнивающие частоты сравнивают, и при небольшом расхождении данных делают заключение о выбранном законе распределения.

Предположим, что случайная величина Х распределена нормально (см. комментарии к задаче № 4). В этом случае выравнивающие частоты находят по формуле:

(8)

где n -число испытаний,

h -длина частичного интервала,

-выборочное среднее квадратичное отклонение,

( - середина i – го частичного интервала)

– функция Лапласа (9)

Результаты вычислений отобразим в таблице №8.

Сравнение графиков (рис.2) наглядно показывает близость выравнивающих частот к наблюдавшимся и подтверждает правильность допущения о том, что обследуемый признак распределён нормально.

 

Таблица 8

Расчёт выравнивающих частот

 

   
149,5 152,5 155,5 158,5 161,5 164,5 167,5 170,5 173,5 176,5 179,5 182,5 185,5 188,5 -19,5 -16,5 -13,5 -10,5 -7,05 -4,05 -1,05 1,95 4,95 7,95 10,95 13,95 16,95 19,95 -3 -2,53 -2,06 -1,59 -1,11 -0,64 -0,17 0,31 0,78 1,25 1,73 2,2 2,67 3,15 0,004 0,02 0,048 0,11 0,22 0,33 0,396 0,38 0,3 0,18 0,09 0,04 0,011 0,003 0,42 1,55 4,54 10,68 20,37 31,0 37,48 36,0 28,0 17,34 8,44 3,37 1,06 0,26   0,05 0,01 0,025 0,055 0,1 0,155 0,185 0,18 0,14 0,085 0,04 0,015 0,005

Интервальный вариационный ряд графически изобразим в виде гистограммы (рис.3). На оси Х отложим интервалы длиной h =3, а на оси Y значения ,расчёт которых представлен в таблице №7. Площадь под гистограммой равна сумме всех относительных частот, т.е. единице.

Графическое изображение вариационных рядов в виде полигона и гистограммы позволяет получать первоначальное представление о закономерностях, имеющих место в совокупности наблюдений.

 


Рис.3

 

3) Найдём числовые характеристики вариационного ряда, используя таблицу №4.

Выборочная средняя ():

или , (10)

где - частоты,

а -объём выборки. Выборочная средняя является оценкой математического ожидания (среднего значения теоретического закона распределения).

В некоторых случаях удобнее рассчитать с помощью условных вариант. В нашем случае варианты - большие числа, поэтому используем разность:

(11)

где С – произвольно выбранное число (ложный нуль). В этом случае

. (12)

Для изменения значения варианты можно ввести также условные варианты путём использования масштабного множителя:

, (13)

где (b выбирается положительным или отрицательным числом).

. Здесь С – середина 8-го интервала.

Выборочная дисперсия ():

(14)

также может быть рассчитана с помощью условных вариант:

(15)

= (1*441+0*324+…+1*324)- 1,95²=40,21

Среднеквадратическое отклонение:

= (16)

= =6,34

Найдем несмещённую оценку дисперсии и среднеквадратического отклонения («исправленную» выборочную дисперсию и среднеквадратическое отклонение) по формулам:

и (17)

 

= =40,41 и S = 6,34=6,36

Доверительный интервал для оценки математического ожидания с надёжностью 0,95 определяют по формуле:

P( - t Ф(t)= (18)

Из соотношения Ф(z)= /2 вычисляют значение функции Лапласа: Ф(z)=0,475. По таблице значений функции Лапласа (Приложение А) находят z =1,96. Таким образом,

168,55-1,96 ,

167,67< a <169,43.

Доверительный интервал для оценки среднего квадратичного отклонения случайной величины находят по формуле:

, (19)

где S – несмещённое значение выборочного среднего квадратичного отклонения;

q – параметр, который находится по таблице (Приложение В) на основе известного объёма выборки n и заданной надёжности оценки .

На основании данных значений =0,95 и n =200 по таблице (Приложение В) можно найти значение q =0,099. Таким образом,

,

5,79 <

V = (20)

4) Проведём статистическую проверку гипотезы о нормальном распределении. Нормальный закон распределения имеет два параметра (r =2): математическое ожидание и среднее квадратическое отклонение. По выборочным данным (таблицы 5 и 7) полученные оценки параметров нормального распределения, вычисленные выше:

, , S =6,36.

Для расчёта теоретических частот используют табличные значения функции Лапласа Ф(z). Алгоритм вычисления состоит в следующем:

- по нормированным значениям случайной величины Z находят значения Ф(z), а затем :

, =0,5+ Ф().

Например,

; ; Ф (-3,0) = -0,4987;

;

- далее вычисляют вероятности = P (;

- находят числа , и если некоторое <5, то соответствующие группы объединяются с соседними.

Результаты вычисления , , и приведены в таблице 9.

По формуле

= (21)

можно сделать проверку расчетов.

По таблице (приложения Г) можно найти число по схеме: для уровня значимости α;=0,05 и числа степеней свободы l=k-r-1 =9-2-1=6 =12,6. Следовательно, критическая область - (12,6; ). Величина =15,61 входит в критическую область, поэтому гипотеза о том, что случайная величина Х подчинена нормальному закону распределения, отвергается.

При α;=0,1 =10,6. Критическая область - (10,6; ). Величина =15,61 также входит в критическую область и гипотеза о нормальном законе распределения величины Х отвергается.

При α;=0,01 =16,8, (16,8; ). В этом случае нет оснований отвергать гипотезу о нормальном законе распределения.

Таблица 9

Определение

 

i Ф ()
  149,5   -0,500 0,000 0,0013 0,0013 0,26 -
  149,5 152,5   -0,449 0,0013 0,0059 0,0046 0,92 -
  152,5 155,5   -0,494 0,0059 0,02 0,014 2,8 -
  155,5 158,5   -0,48 0,02 0,057 0,037 7,4 2,54
  158,5 161,5   -0,44 0,057 0,134 0,077 15,4 4,58
  161,5 164,5   -0,37 0,134 0,26 0,126 25,2 0,7
  164,5 167,5   -0,24 0,26 0,433 0,1725 34,5 0,36
  167,5 170,5   -0,07 0,433 0,62 0,188 37,6 0,06
  170,5 173,5   0,12 0,62 0,78 0,16   1,125
  173,5 176,5   0,28 0,78 0,89 0,11   0,045
  176,5 179,5   0,39 0,89 0,96 0,07   0,071
  179,5 182,5   0,46 0,96 0,99 0,03   6,125
  182,5 185,5   0,49 0,99 0,996 0,006 1,2 -
  185,5 188,5   0,496 0,996 0,999 0,003 0,6 -
  188,5   0,5 0,999 1,0 0,001 0,2 -

,0000

2 часть

1) Данные таблицы 3 сгруппируем в корреляционную таблицу 10.

2) Строим в системе координат множество, состоящее из 200 экспериментальных точек (рисунок 4).

По расположению точек делаем заключение о том, что экономико-математическую модель можно искать в виде .

3) Найдём выборочные уравнения линейной регрессии.

Для упрощения расчётов разобьём случайные величины на интервалы и выберем средние значения. Для величины Х указанные действия были выполнены в 1 части задания.

Таблица 10

Корреляционная таблица

 

                                                Y/X
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
Продолжение таблицы 10
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                                 
                                               

 
 

Рис.4

Для случайной величины Y, используя (1), получим h =2, число интервалов равно 13. Результаты внесём в таблицу со сгруппированными данными №11.

Находим средние значения , по формулам:

 

, (22)

, (23)

, (24)

. (25)

 

149,5*86+155,5(82+…+90)+…+188,5*104=2986101

 

Используя формулы:

, (26)

, (27)

 

получим

 

= , =

 

 

Таблица 11

Сгруппированные данные выборки

 

                               
  XY 149,5 152,5 155,5 158,5 161,5 164,5 167,5170,5173,5 170,5 173,5 176,5 179,5 182,5 185,5 188,5
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                                 
                               

 

4) Вычисляем выборочный коэффициент корреляции по формуле:

. (28)

=

Принято считать, что если 0,1< <0,3 – связь слабая, если 0,3< <0,5 – связь умеренная, если 0,5< <0,7 – связь заметная, если 0,7< <0,9 – связь высокая, если 0,9< <0,99 – связь весьма высокая.

Для данного примера связь между X и Y умеренная.

Затем получают выборочное уравнение линейной регрессии Y на X в виде:

(29)

и выборочное уравнение линейной регрессии X на Y:

. (30)

и

или

Вычисления сумм рекомендуем проводить с помощью пакетов прикладных математических программ (сегодня их существует много).

 







Дата добавления: 2015-10-01; просмотров: 416. Нарушение авторских прав; Мы поможем в написании вашей работы!



Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Вычисление основной дактилоскопической формулы Вычислением основной дактоформулы обычно занимается следователь. Для этого все десять пальцев разбиваются на пять пар...

Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

ТРАНСПОРТНАЯ ИММОБИЛИЗАЦИЯ   Под транспортной иммобилизацией понимают мероприятия, направленные на обеспечение покоя в поврежденном участке тела и близлежащих к нему суставах на период перевозки пострадавшего в лечебное учреждение...

Этапы и алгоритм решения педагогической задачи Технология решения педагогической задачи, так же как и любая другая педагогическая технология должна соответствовать критериям концептуальности, системности, эффективности и воспроизводимости...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия