Студопедия — ТеоретическИе ОСНОВЫ РАБОТЫ. Амплитудная модуляция применяется в радиосвязи при передаче и приеме звукового сигнала на декаметровом и более низкочастотных диапазонах радиоволн
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ТеоретическИе ОСНОВЫ РАБОТЫ. Амплитудная модуляция применяется в радиосвязи при передаче и приеме звукового сигнала на декаметровом и более низкочастотных диапазонах радиоволн






 

Лабораторная работа №6

 

Амплитудная модуляция применяется в радиосвязи при передаче и приеме звукового сигнала на декаметровом и более низкочастотных диапазонах радиоволн. Принцип ам-плитудной модуляции заключается в наложении низкочас-тотных колебаний (передаваемый сигнал) на высокочастот-ные (несущая частота).

Пусть величина тока в колебательном контуре изменя-ется по гармоническому закону:

 

. (6.1)

 

При наложении низкочастотного сигнала (частотой ) из-менения тока в контуре превращаются в более сложные ко-лебания, амплитуда которых начинает сравнительно мед-ленно меняться с частотой :

 

, (6.2)

 

где – модулирующая функция, причем .

Тогда имеем:

 

, (6.3)

 

т.к. частота модуляции ( – несущая частота), то ко-лебание (6.3) можно рассматривать как гармоническое, име-ющее амплитуду . Максимальное и минимальное значение амплитуды: , .

Величина

(6.4)

 

называется глубиной модуляции (рис. 6.1).

 

 
 

После преобразования выражения (6.3) можно получить:

 

. (6.5)

 

Таким образом, модулированное колебание (6.5) пред-ставляет собой три гармонических колебания, происходя-щих с частотами , и (рис. 6.2).

Основная частота называется несущей частотой, а до-полнительные частоты () и (), возникающие при модуляции – боковыми частотами.

Величина называется шириной спектра модулирован-ного сигнала.

 
 

Любой приемник радиосигнала имеет на входе колеба-тельный контур, настроенный в резонанс с несущей час-тотой. Поэтому, изменяя несущую частоту, мы изменяем амплитуду принимаемого сигнала, что можно видеть на эк-ране осциллографа. Измерив зависимость амплитуды сигна-ла от несущей (высокой) частоты, можно определить резо-нансную частоту контура и его добротность. Амплитудный модулятор, используемый в работе, тоже имеет колебатель-ный контур. Принципиальная схема амплитудного модуля-тора показана на рис. 6.5, колебательный контур модуля-тора состоит из катушки индуктивности LК и емкости СК.

Добротность колебательной системы определяется выра-жением:

 

, (6.6)

 

где Λ – логарифмический декремент затухания, который, в свою очередь, рассчитывается как:

 

. (6.7)

В выражении (6.7) β; – коэффициент затухания; T – пери-од затухающих колебаний.

Подставив в (6.6) выражение (6.7) и, учитывая связь между периодом и частотой колебаний, получим:

 

, (6.8)

 

где – частота вынуждающей силы.

При малых затуханиях (β;<<1) частота колебаний при-мерно равна собственной (), что позволяет записать:

 

. (6.9)

 

Амплитуда вынужденных колебаний зависит от частоты:

 

, (6.10)

 

где f0 зависит от амплитуды вынуждающей силы: в случае механических колебаний; в случае элек-трических колебаний. Здесь F0 – максимальное значение вынуждающей силы; m – масса колеблющегося тела; ε0 – максимальное значение вынуждающей ЭДС; L – индуктив-ность контура.

Итак, измерив амплитуду Aрез при резонансе контура и значения амплитуды на частотах и , отстоящих на ве-личину β; от резонансной частоты, можно рассчитать доб-ротность контура.

Резонанс в колебательной системе наступает при частоте

 

, (6.11)

 

однако при малых затуханиях можно считать, что резонанс-ная частота примерно равна собственной .

Тогда, введя

 

и , (6.12)

 

можно записать, что

 

. (6.13)

 

С учетом этого выражение (6.9) принимает вид:

 

. (6.14)

 

Для того, чтобы определить , рассчитаем, чему равна амплитуда колебаний на частотах и . Точнее, мы определим отношение амплитуды A1,2 колебаний на часто-тах и к амплитуде колебаний при резонансе Aрез.

Подставив выражение (6.11) в (6.10) определим резо-нансную амплитуду:

 

. (6.15)

 

Для определения амплитуды A1,2 (а амплитуда на часто-тах и будет одинаковой, это видно из симметрич-ности значений знаменателя в (6.10)) подставим в (6.10) выражение:

 

. (6.16)

 

Поскольку числитель (6.10) есть величина постоянная, рассчитаем подкоренное выражение в знаменателе:

 

.

 

Раскрыв скобки, получим

 

 

 

 

(6.17)

 

При получении выражения (6.17) мы пренебрегли слага-емыми, содержащими коэффициент затухания β; вследствие его малости. Итак, амплитуда колебаний на частотах и будет:

 

(6.18)

 

Итак, для определения добротности колебательной сис-темы по формуле (6.14) необходимо определить резонанс-ную частоту , то есть ту частоту, для которой амп-литуда максимальна, и две частоты и , на которых ам-плитуда равна 70% от максимальной. На рис.6.3 показана амплитудно-частотная характеристика колебательной сис-темы, позволяющая определить добротность этой системы с использованием формулы (6.14).

 

 

 
 

 







Дата добавления: 2015-10-02; просмотров: 351. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Меры безопасности при обращении с оружием и боеприпасами 64. Получение (сдача) оружия и боеприпасов для проведения стрельб осуществляется в установленном порядке[1]. 65. Безопасность при проведении стрельб обеспечивается...

Весы настольные циферблатные Весы настольные циферблатные РН-10Ц13 (рис.3.1) выпускаются с наибольшими пределами взвешивания 2...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия