Студопедия — Просвечивающая электронная микроскопия
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Просвечивающая электронная микроскопия






Просвечивающая электронная микроскопия является чрезвычайно тонким и в то же время необходимым методом надежной оценки структуры, позволяющим прогнозировать свойства материалов. Освоение современным научным и технических сообществом наноразмерных объектов еще в большей степени обозначило важность применения электронной микроскопии, в частности, просвечивающей и растровой.

Просвечивающий электронный микроскоп (ПЭМ) имеет много сходных черт со световым микроскопом и является типичным прибором составляющие части которого (источник электронов, диафрагмы (или щели), система управления пучком и юстировки, вакуумная система и т.д.) входят в состав подобных приборов.

В качестве источника электронов используется катод электронной пушки в виде нити V-образной формы (рис. 2.6).

Рис. 2.6. Схема просвечивающего электронного микроскопа. а) режим дифракции; б) режим изображения.

 

Материалом катода чаще всего является вольфрам. Электроны ускоряются высоким напряжением в электрическом поле электронной пушки. Для исследования металлических материалов наиболее широко применяются микроскопы с рабочим напряжением до 200 кВ. Решающее значение приобретает стабильность напряжения, от чего зависит монохроматичность изучения и, как следствие, наличие хроматической аберрации.

Для юстировки микроскопа большое значение имеет отклоняющая система, с помощью которой производится совмещение ЭП с оптической осью прибора. Наклон и смещение ЭП осуществляется магнитным полем, создаваемым электромагнитными катушками.

Далее ЭП попадает в поле одной или двух конденсорных линз, формирующих пучок, сходящийся на образце в виде пятна малого сечения (до 100 нм).

Образец, на который направляется ЭП, может представлять собой, например, нанопорошок закрепленный в прозрачной для электронов матрице или нанопленку, нанесенную на прозрачную для электронов основу.

Как уже отмечалось, при взаимодействии с кристаллом проявляется волновая природа электрона и происходит дифракция электронных волн на кристаллической решетке. В результате вылетевшие из нижней поверхности образца электроны будут формировать не только один проходящий не отклоненный ЭП, но и дифрагированные ЭП, отклоненные в соответствии с условием В-Б. Если ПЭМ используется в режиме дифракции, то все пучки проходят объективную линзу, в задней фокальной плоскости которой возникает дифракционная картина.

Следующий этап состоит в увеличении размеров картины проекционными линзами и в фокусировании на люминесцентный экран (рис. 2.6, а).

Если ЭМ используется в режиме изображения (см. рис. 2.6, б), то ниже объективной линзы вводится апертурная диафрагма (диаметром 0.5-20 мкм}, или пропускающая только неотклоненный ЭП в случае светлопольного изображения, или один из дифрагированных- для темнопольного изображения. Для получения высококачественных изображений требуется тщательная юстировка микроскопа.

Увеличение ЭМ составляет сотни тысяч, но это может оказаться бесполезным, если в силу каких-либо причин (плохая юстировка, аберрации, механическая и электрическая нестабильности и т. д.) низка разрешающая способность прибора.

Линзы современных ЭМ представляют собой электромагниты (рис. 2.7), в которые для более эффектного использования магнитного поля вставлены сердечники из магнитомягкого материала с полюсами. Фокусное расстояние в линзах изменяется при изменении тока.

Рис. 2.7. Характерная конструкция электронной линзы

 

Существенную роль для получения высококачественного изображения играют диафрагмы, изготавливаемые из тугоплавких материалов, например, тантала. Световая или конденсорная диафрагма образует тонкий пучок параллельных электронов, апертурная или объектная служит для выделения отдельных пучков, формирующих изображение, и, наконец, селекторная диафрагма необходима для выделения участков на образце, дифракция от которых интересует исследователя.

В колонне и пушке ПЭМ поддерживается высокий вакуум, кроме этого обеспечивается высокая механическая стабильность прибора и его защита от различных полей. Для создания необходимых дифракционных условий существует проблема точного и плавного наклонения и вращения образца, решаемая специальным механическим устройством - гониометром.

К достоинствам ПЭМ относятся:

-высокая разрешающая способность, возможная из-за очень малой длины волн электронов, ускоренных высоким напряжением. С помощью ПЭМ можно различать точки, отстоящие друг от друга на расстоянии долей нанометра.

- возможность анализа физической природы и количественных оценок дефектов кристаллов и других структурных элементов в силу дифракционной природы контраста на электронно-микроскопических изображениях;

- уникальная возможность исследовать одновременно изображение (морфологию) и кристаллографические характеристики структуры;

-высокая интенсивность электронного излучения, прошедшего через образец, позволяющая достаточно хорошо наблюдать и быстро регистрировать полученные изображения;

- большая глубина резкости, т. е. возможность одновременного изображения элементов структуры, находящейся в o6paзце на различной глубине. Это достоинство позволяет также широко использовать электронную микроскопию для исследования шероховатых поверхностей на отражение и с помощью реплик (слепков) на просвет.

Вся информация об объекте, освещаемом ЭП, заложена в тех изменениях, которые претерпевает ЭП при взаимодействии с веществом. Малая, даже по сравнению с межатомным расстоянием, длина волны электрона (10-3 нм) дает основание считать, что в ЭП, рассеянном на кристалле, содержится информация о:

- расположении атомов в решетке,

- принадлежности атомов тому или иному элементу,

- несовершенствах кристаллического строения на атомном и более грубом уровнях,

Имеющиеся измерительные возможности позволяют, как правило, воспользоваться только частью этой информации, и для расшифровки изображения необходимо иметь представление о принципах его построения и о том, какая часть информации теряется.

Всякий просвечиваемый объект, тем более кристаллический, можно представить в виде периодической решетки, на которую падает параллельный когерентный пучок излучения (рис. 2.8). Для получения максимальной информации об объекте необходимо все прошедшее через него излучение без потерь предъявить наблюдателю.

Рис. 2.8. Условная схема возникновения изображения периодической решетки

Для этого используется объективная линза, располагаемая под объектом. Объектив собирает в своей задней фокальной плоскости все параллельные лучи, вышедшие из разных точек объекта, т.е. лучи, дифрагированные под одинаковыми углами. Полученные дифракционные максимумы образуют дифракционную картину, называемую первичным изображением объекта (по Аббе). Ниже фокальной плоскости лучи расходятся, и в другой плоскости - плоскости изображения сходятся уже лучи, выпущенные из одних и тех же точек объекта. Эти лучи интерферируют, образуя вторичное (действительное) изображение объекта. Чем больше дифрагированных пучков проходит объективную линзу (без искажений), тем больше соответствие изображения объекту. Для использования двух пучков, прямого и ближайшего дифрагированного удалось увидеть изображение периодических полос, соответствующих расположению атомных плоскостей решетки; использование большого количества ЭП позволило наблюдать систему пятен, соответствующих расположению атомов. Таким обрезом, чем больше ЭП участвует в изображении, тем больше деталей структуры можно выявить. Однако для привлечения многих ЭП (создания многолучевого изображения) необходимо выполнить следующие условия:

- дифрагированные пучки должны пройти сквозь отверстие малой апертурной диафрагмы. Размер диафрагмы должен быть малым в силу большой сферической аберрации магнитных линз, из-за чего участие в формировании изображения периферийных зон объективной линзы приведет к понижению разрешающей способности. Это может свести на нет преимущества многопучкового изображения и сделать невозможным рассмотрение отдельных атомных плоскостей, отстоящих на расстояния порядка долей нанометра. Поэтому для использования многих дифрагированных пучков необходимо уменьшать углы дифракции ЭП, что удается с помощью высоковольтной электронной микроскопии (U> 500 кВ);

- разрешение, которое требуется для наблюдения отдельных плоскостей или атомов, выполнимо только при высокой электрической и механической стабильности узлов прибора и требует больших усилий по выявлению и регистрации изображения.

Однако следует напомнить, что для формирования электронно-микроскопического изображения чаще всего используется только один пучок, легко выделяемый апертурной диафрагмой. При этом, естественно, не наблюдается структура кристаллической решетки, но, тем не менее, есть возможность получить информацию о более крупных структурных элементах, изменяющих условия отражения и организующих контраст (отличие деталей изображения от фона).

В приведенной модели периодической решетки эти структурные элементы можно представить как большие, по сравнению с размером атома, искажения.

Рис. 2.9. Схема формирования изображения от идеального кристалла в проходящем пучке

 

При наблюдении электронно-микроскопического изображения идеального кристалла нанообъекта в светлом поле (рис. 2.9) в проходящем (нулевом) ЭП можно увидеть в основном следующее:

а) поле зрения на экране в пределах кристалла светлое, это свидетельствует о том, то кристалл прозрачен для электронов;

б) поле зрения темное - кристалл для электронов непрозрачен.

То обстоятельство, что один и тот же кристалл может быть прозрачен или непрозрачен, легко объясняется условием В-Б, но при этом даже когда идеальный кристалл прозрачен, внутри кристалла не видно никаких особенностей, т.е. отсутствует контраст. Единственное, что можно заметить в данном случае, - это границы кристалла, а значит, определить только его форму и размеры.

Контраст на электронно-микроскопическом изображении в проходящем ЭП появляется в случае локального изменения дифракционных условий в кристаллической решетке и называется дифракционным контрастом. Толкование электронно-микроскопических изображений основывается на объяснении происхождения дифракционного контраста. Источником локальных изменений условий дифракции являются различные несовершенства кристаллической решетки. Остановимся на некоторых из них.

Дислокации. Присутствие дислокаций приводит к местному изгибу плоскостей решетки (матрицы) вдоль линии дислокации (рис. 2.10).

 

Рис. 2.10. Образование контраста от краевой дислокации а) в светлом поле б) в темном поле

При этом изогнутые участки можно поставить в отражающее положение, тогда как вся матрица будет прозрачна для прямо проходящих электронов. Это выразится в появлении на экране темной полосы, соответствующей положению проекции линии дислокации в кристалле на плоскость экрана. Дифрагированный пучок отсекается апертурной диафрагмой, причем если диафрагмой выделить именно дифрагированный пучок, а отсечь проходящий, то в поле зрения будет светлая линия дислокации на темном поле кристалла, т.е. формируется темнопольное изображение элементов структуры. Разрешение в темнопольном изображении может быть лучше, чем в светлопольном. Так как локальное изменение условий дифракции возможно при отражении ЭП только от изогнутых участков плоскостей, то, если электроны вблизи дислокации падают на решетку таким образом, что в отражающем положении находятся неискаженные плоскости, контраста на изображении не возникает и дислокация может оказаться невидимой. Отсюда вытекает правило невидимости дислокаций:

g·b = 0

где g - вектор отражения дифрагированного ЭП; b – вектор Бюргерса, показывающий направление искажения решетки, которое для краевой дислокации имеет вид

g·b x U = 0

где U вектор касательной к линии дислокации. В данной случае учитывается возникновение контраста при отрешении от плоскости скольжения, которая будет несколько изогнута дислокацией.

2. Плавные и дискретные изгибы участков кристалла, вызывающие разориентацию кристаллической решетки (рис. 2.11).

Рис. 2.11. Образование дифракционного контраста от плавно изогнутого кристалла (без учета действия объективной линзы).

При этом на экране появятся темные и светлые полосы, если изгиб плавный, то при наклоне объекта полосы будут плавно перемещаться, В случае дискретного изгиба будет наблюдаться неподвижная граница между разориентированными участками, при этом условия дифракции, а значит и контраста, будут меняться более или менее резко (дискретно).

3. Выделения и предвыделения вторичных фаз. При зарождении вторичной фазы, как правило, происходит; упругое искажение матрицы, что изменяет местные условия дифракции (рис. 2.12).

Рис. 2.12. Схема образования изображения от образца с включением; а) светлое поле, б) темное поле

Возникающие границы раздела и иные чем в матрице межплоскостные расстояния в новой фазе делают ее контрастной.

4. Вакансионные и примесные скопления. При достаточно большом скоплении вакансий или примесных атомов матрица искажается на достаточно большом протяжении, что делает заметным это скопление на изображении. Скопление вакансий может образовывать вакансионный диск. Если диаметр диска достигает достаточно большого размера, то диск "схлопывается". "Схлопывание" вакансионного диска приводит к образованию дислокационной петли, наблюдаемой в электронном микроскопе.

Другие вида контраста в рамках первичного знакомства сложны для восприятия без привлечения теории и поэтому здесь не рассматриваются.

Разрешающая способность ПЭМ как минимальное расстояние между двумя точками объекта, которое еще можно различить на изображении, зависит от следующих основных факторов:

-длины волны электронов;

-величины сферической аберрации;

-величины хроматической аберрации;

-астигматизма,

-механической стабильности и состояния прибора (вакуум, чистота и т.д.).

Малая длина волны электронов, ускоренных высоким напряжением, является, как известно, основным условием уникальной разрешающей способности электронного микроскопа, так как чем меньше длина волны, тем меньше элементы структуры объекта, на которых может происходить дифракция волн, т.е. тем ниже оптическая однородность среды для волн данной длины.

Длина волны электрона l определяется, исходя из известных соотношений:

U·e = 1/2 m·v2

где e - заряд электрона; m. - масса движущегося электрона; U - ускоряющее напряжение; v - скорость электрона.

С другой стороны, по формуле Де-Бройля.

 

h = m·v ·l

Отсюда можно получить

 

l = h/(2m·U·e)-2

Подставляя численные значения, получим простое выражение:

l =1,226/(U) -2 (нм)

Величина сферической аберрации оптической системы определяется сферической аберрацией объективной линзы. Неизбежная неоднородность радиальной составляющей магнитном поля в линзе (рис. 2.7) (на периферии напряженность больше, чем у оси). Это приводит к неравенству фокусных расстояний линзы для приосевых и периферийных электронов (рис. 2.13).

Рис. 2.13. Схема сферической аберрации

Поэтому для построения изображения используются, как правило, только приосевые электроны, остальные отсекаются апертурной диафрагмой. Однако величину диафрагмы нельзя сделать сколь угодно малой, так как при уменьшении отверстия диафрагмы уменьшается доля информации, которая переносится ЭП на экран. В частности, если пройдет только один неотклоненный или только дифрагированный пучок, то пропадет информация о самых малых объектах, которые может различить микроскоп - атомах. Таким образом, с одной стороны, разрешение ограничено самим прибором и нужно уменьшать отверстие апертурной диафрагмы, с другой стороны, разрешение ограничено необходимостью для различения самых малых объектов пропустит через диафрагму не менее двух пучков. Значит, для демонстрации предельного разрешения существует оптимальный размер диафрагмы. Здесь следует отметить, что ПЭМ часто используется именно для получения изображения только в одном пучке, когда контраст создается расчет удаления части интенсивности электронных волн в местах, где несовершенства структуры объекта меняют дифракционные условия. Такой контраст называется амплитудным. При этом не требуется, как правило, наивысшей разрешающей способности.

Может иметь значение также, так называемая дифракционная ошибка, заключающаяся в том, что пучок, падающий на объект, не может быть строго параллелен, а расходящийся пучок при дифракции даст также расходящийся дифрагированный ЭП. При этом точка на объекте превратится в пятно на экране, а два близко расположенных пятна сольются в одно, т.е. будут неразрешимы отдельно друг от друга.

Изображении в двух и более пучках возникает в условиях так называемого фазового контраста, когда в плоскости изображения интерферируют пучки, прошедшие в отверстие апертурной диафрагмы (рис. 2.8).

Но тогда отверстие диафрагмы должно быть достаточно большим и появляется проблема сферической аберрации объективной линзы.

Большое, влияние на качество изображения оказывает также хроматическая аберрация, обусловленная тем, что электроны в ЭП имеют некоторый разброс по скоростям. Вследствие этого они по-разному преломляются в объективной линзе и дают размытость на изображении. Борьба с этим видом искажений заключается в повышении стабильности ускоряющего напряжения и тока в линзах микроскопа, но некоторой влияние на скорость электронов может оказать и сам образец, с чем, естественно, бороться невозможно.

Астигматизм изображения выражается в том, что такой объект, как круглое отверстие в образце, на экране будет выглядеть эллипсом. Это особенно проявляется при не осевом освещении объекта; возникновение этого дефекта связано в неоднородностью магнитного поля линз из-за несовершенства геометрической формы наконечников, с неоднородностью магнитных свойств материала наконечников, а также с возможным загрязнением. Астигматизм в некоторой степени устраняется стигматорами - специальными устройствами, накладывающими на основное поле линз слабое эллиптическое поле, амплитуда и направление которого регулируются, компенсируя астигматизм.

Появление высоковольтных ПЭМ с напряжением 1-3 мВ позволило существенно увеличить толщину просвечиваемой фольги, максимально приблизить ее структуру к структуре массивного образца, а кроме того удалось наблюдать процессы изменения структуры, фазовых превращений, упорядочения и т.д. непосредственно в колонне микроскопа в условиях, аналогичных массивному образцу. Использование высокого напряжения позволяет получить многолучевые (до 100 ЭП) изображения с разрешением отдельных атомов кристаллической решетки и даже отличить атомы различных элементов, в таких объектах, как тонкие пленки химических соединений.

Если ЭП направить на фольгу с таким расчетом, чтобы прошедший и дифрагированный пучок составляли с оптической осью микроскопа один и тот жe угол (рис. 2.14), то при прохождении этих двух пучков через апертурную диафрагму и объектив на экране возникает интетерференционная картина от их взаимодействия.

Рис. 2.14. Получение двухлучевого изображения наклоноэлектронного пучка

 

При использовании больших увеличений (около 500000) можно увидеть периодическую структуру, расшифровка которой дает определенные сведения о расположении атомных плоскостей в кристаллической решетке образца. Если в формировании изображения участвуют не два, а несколько ЭП, то можно рассмотреть отдельные атомы в кристаллической решетке и даже отличить атомы, принадлежащие разным элементам. Созданию многолучевых изображений способствует повышение ускоряющего напряжения. Наличие дефектов отражается на контрасте изображения, например, так были впервые увидены обрывающиеся атомные плоскости и тем самым доказано существование дислокаций. Этот метод применяется также для определения предельной разрешающей способности данного электронного микроскопа.

Методика слабого пучка. Так называется способ получения темнопольных электронно-микроскопических изображений при действии отражения, значительно отклоненного от точного В-Б отражающего положения и, следовательно, обладающего малой интенсивностью. Основное достоинство методики состоит в том, что при таких дифракционных условиях формирования изображения существенно снижается ширина контраста от дислокаций и других очагов локальных искажений кристаллической решетки. Кроме того, удается приблизить изображение дефектов на электронно-микроскопическом снимке к их истинному положению в кристалле, а также существенно упростить контраст от наблюдаемого дефекта вследствие уменьшения динамических эффектов рассеивания. Эти обстоятельства делает методику слабого пучка одним из наиболее эффективных для электронно-микроскопического анализа реальной структуры нанообъектов, особенно с высокой плотностью всевозможных дефектов.

Методика эффективна при разрешении отдельных близко расположенных дефектов. Такая ситуация может сложиться, когда в нанообъектах возникает высокая плотность дефектов, в частности, в результате мартенситного превращения, пластической деформации значительных степеней или, когда линейные дефекты соединены другим высокоэнергетическим пленарным дефектом, например, частичные дислокации, соединенные, дефектом упаковки, или сверхструктурные дислокации, в которых единичные дислокации соединены полоской антифазной границей.







Дата добавления: 2015-10-12; просмотров: 2247. Нарушение авторских прав; Мы поможем в написании вашей работы!



Расчетные и графические задания Равновесный объем - это объем, определяемый равенством спроса и предложения...

Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Понятие массовых мероприятий, их виды Под массовыми мероприятиями следует понимать совокупность действий или явлений социальной жизни с участием большого количества граждан...

Тактика действий нарядов полиции по предупреждению и пресечению правонарушений при проведении массовых мероприятий К особенностям проведения массовых мероприятий и факторам, влияющим на охрану общественного порядка и обеспечение общественной безопасности, можно отнести значительное количество субъектов, принимающих участие в их подготовке и проведении...

Тактические действия нарядов полиции по предупреждению и пресечению групповых нарушений общественного порядка и массовых беспорядков В целях предупреждения разрастания групповых нарушений общественного порядка (далееГНОП) в массовые беспорядки подразделения (наряды) полиции осуществляют следующие мероприятия...

Правила наложения мягкой бинтовой повязки 1. Во время наложения повязки больному (раненому) следует придать удобное положение: он должен удобно сидеть или лежать...

ТЕХНИКА ПОСЕВА, МЕТОДЫ ВЫДЕЛЕНИЯ ЧИСТЫХ КУЛЬТУР И КУЛЬТУРАЛЬНЫЕ СВОЙСТВА МИКРООРГАНИЗМОВ. ОПРЕДЕЛЕНИЕ КОЛИЧЕСТВА БАКТЕРИЙ Цель занятия. Освоить технику посева микроорганизмов на плотные и жидкие питательные среды и методы выделения чис­тых бактериальных культур. Ознакомить студентов с основными культуральными характеристиками микроорганизмов и методами определения...

САНИТАРНО-МИКРОБИОЛОГИЧЕСКОЕ ИССЛЕДОВАНИЕ ВОДЫ, ВОЗДУХА И ПОЧВЫ Цель занятия.Ознакомить студентов с основными методами и показателями...

Studopedia.info - Студопедия - 2014-2024 год . (0.013 сек.) русская версия | украинская версия