Студопедия — Основания Бренстеда
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Основания Бренстеда






Основания, по Бренстеду, это нейтральные молекулы и ионы, способные присоединять протон водорода. Для образования ковалентной связи с протоном основания Бренстеда должны предоставлять или неподелённую электронную пару, или электроны π-связи. В соответствии с этим основания Бренстеда делятся на n-основания и π-основания.

n-Основания – это анионы или нейтральные молекулы, имеющие атом с неподелённой электронной парой. Их классифицируют по центрам основности следующим образом:

- оксониевые основания: спирты R-ÖH, простые эфиры
R-Ö-R, сложные эфиры, альдегиды и кетоны


- аммониевые основания: амины, гетероциклические соединения, например, пиридин

       
   


- сульфониевые основания: тиоспирты, тиоэфиры.

π-Основания – соединения, имеющие π-связи, т.е. алкены, алкадиены, алкины, арены. Это очень слабые основания, т.к. протонируемые электронные пары несвободны. Например, этен проявляет π-основные свойства при образовании π-комплекса с протоном водорода:

 

 


Для количественной характеристики основности используют величину pKa сопряжённой с данным основанием кислоты (BH+). Эту величину обозначают pKBH+. Чем pKBH+ больше, тем сильнее основание.

Влияние природы атома в основном центре и связанных с ним заместителей на основность противоположно рассмотренному ранее их влиянию на кислотность:

- с увеличением электроотрицательности атома основного центра основность уменьшается (атом труднее отдаёт свою неподелённую электронную пару для присоединения протона), т.е. аммониевые основания сильнее оксониевых. Так, этанол способен взаимодействовать только с концентрированными минеральными кислотами:

 

 

,

 

а этиламин проявляет основные свойства даже при взаимодействии с водой:

 

.

- с увеличением поляризуемости атома основного центра основность уменьшается, т.е. оксониевые основания сильнее сульфониевых;

- электронодонорные заместители повышают основность, а электроноакцепторные – понижают (чем выше электронная плотность на основном центре, тем легче он предоставит свою электронную пару протону). Так, в ряду п-нитроанилин, анилин,
п-толуидин основность повышается: нитро-группа является электроноакцепторным заместителем, а метильная группа – электронодонорным. Это подтверждают и значения pKBH+.

 

 


pKBH+=1,00 pKBH+=4,60 pKBH+=5,10

 

Итак, самыми сильными основаниями являются аммониевые. Основность различных типов аминов мы обсудим, рассматривая химические свойства аминов в целом.

 

АМИНЫ

Амины – это производные аммиака, в молекуле которого один, два или три атома водорода замещены углеводородными радикалами. Отсюда первый тип классификации аминов: по количеству радикалов амины подразделяют на первичные, вторичные и третичные.

 


Другой вид классификации аминов – по природе радикалов. Амины подразделяют на алифатические и ароматические. Например, приведенные выше амины являются алифатическими, а анилин (аминобензол) – ароматическим:

 

 


Для названия аминов применяют радикало-функциональную и заместительную номенклатуру IUPAC. По радикало-функциональной номенклатуре называют радикал или радикалы, если их несколько (в алфавитном порядке), и добавляют слово «амин», например, метиламин, метилэтиламин, диметиламин и т.д. Те амины, которые нельзя назвать по радикало-функциональной номенклатуре (сложные радикалы), называют по заместительной номенклатуре, например:

 

 


Ароматические амины обычно рассматривают как производные анилина, например:

 


За счёт неподелённой электронной пары азота амины проявляют основные и нуклеофильные свойства.

Сравним основные свойства различных групп аминов.

Алифатические амины являются более сильными основаниями, чем ароматические. Это связано с тем, что неподелённая электронная пара азота в ароматических аминах участвует в p,π-сопряжении и менее доступна для атаки протона водорода. В алифатических же аминах электронная плотность на атоме азота аминогруппы повышена за счёт электронодонорного влияния алкильных групп:

 


Алифатические амины взаимодействуют с минеральными кислотами, карбоновыми кислотами и даже с водой (очень слабой кислотой):

 

 

 


Ароматические амины как слабые основания взаимодействуют с минеральными кислотами:

 

 

Заместители в ароматическом кольце влияют на основные свойства аминов: электронодонорные заместители повышают основные свойства, а электроноакцепторные – понижают (см. стр.71).

Сравним основные свойства различных типов алифатических аминов – первичных, вторичных и третичных, например, метиламина, диметиламина и триметиламина.

 


Чем выше электронная плотность на атоме азота, тем выше основные свойства амина. Каждая метильная группа смещает электронную плотность к атому азота, поэтому можно было бы предположить, что самым сильным основанием является третичный амин. Однако, сравнивая значения pKBH+, можно увидеть, что это не так: самым сильным основанием является вторичный амин. Этот факт можно объяснить с позиций пространственной доступности неподелённой электронной пары азота: в триметиламине три крупных заместителя «прикрывают» её. Таким образом, ряд убывания основности алифатических аминов:

вторичные > первичные > третичные.

За счет неподелённой электронной пары азота амины проявляют также нуклеофильные свойства. Амины являются нуклеофилами, например, в реакциях алкилирования и ацилирования.

Алкилирование – это введение в молекулу алкила (метил, этил, пропил и т.п.). В качестве алкилирующих реагентов обычно используют алкилгалогениды (этилхлорид, метилбромид, например). Так, в реакции этиламина с метилхлоридом образуется метилэтиламин:

 

 


Это реакция нуклеофильного замещения. Она позволяет получить вторичный амин из первичного и третичный – из вторичного.

 

Ароматические амины также вступают в реакции алкилирования, но менее активно, т.к. их нуклеофильные свойства понижены (неподелённая электронная пара, отвечающая за них, участвует в p,π-сопряжении).

 


Ацилированием называют введение в молекулу ацила – остатка карбоновой кислоты (например, ацетил – это остаток уксусной кислоты, пропионил – пропионовой). Для ацилирования аминов обычно используют ангидриды соответствующих кислот.

 


Подробнее мы будем рассматривать эти реакции, изучая тему «Карбоновые кислоты и их функциональные производные».

Для ароматических аминов характерны также реакции, протекающие за счёт ароматического кольца – реакции электрофильного замещения. Ранее мы уже рассматривали влияние аминогруппы на ход реакций SE (см. стр.44,45): аминогруппа, являясь электронодонорным заместителем (+MNH2 >> -INH2), облегчает эти реакции в сравнении с бензолом и является орто-, пара-ориентантом. Например, бромирование анилина бромной водой приводит к образованию белого осадка 2,4,6-триброманилина:

 


Эту реакцию используют для качественного обнаружения анилина.

 







Дата добавления: 2015-10-12; просмотров: 1438. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Постинъекционные осложнения, оказать необходимую помощь пациенту I.ОСЛОЖНЕНИЕ: Инфильтрат (уплотнение). II.ПРИЗНАКИ ОСЛОЖНЕНИЯ: Уплотнение...

Приготовление дезинфицирующего рабочего раствора хлорамина Задача: рассчитать необходимое количество порошка хлорамина для приготовления 5-ти литров 3% раствора...

Дезинфекция предметов ухода, инструментов однократного и многократного использования   Дезинфекция изделий медицинского назначения проводится с целью уничтожения патогенных и условно-патогенных микроорганизмов - вирусов (в т...

В эволюции растений и животных. Цель: выявить ароморфозы и идиоадаптации у растений Цель: выявить ароморфозы и идиоадаптации у растений. Оборудование: гербарные растения, чучела хордовых (рыб, земноводных, птиц, пресмыкающихся, млекопитающих), коллекции насекомых, влажные препараты паразитических червей, мох, хвощ, папоротник...

Типовые примеры и методы их решения. Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно Пример 2.5.1. На вклад начисляются сложные проценты: а) ежегодно; б) ежеквартально; в) ежемесячно. Какова должна быть годовая номинальная процентная ставка...

Выработка навыка зеркального письма (динамический стереотип) Цель работы: Проследить особенности образования любого навыка (динамического стереотипа) на примере выработки навыка зеркального письма...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия