Студопедия — Интегральные схемы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Интегральные схемы






Интегральная микросхема (или просто интегральная схема) есть совокупность, как правило, большого количества взаимосвязанных компонентов (транзисторов, диодов, конденсаторов, резисторов и т.п.), изготовленная в едином технологическом цикле (т.е. одновременно), на одной и той же несущей конструкции - подложке - и выполняющая определенную функцию преобразования информации.

Термин «интегральная схема» (ИС) отражает факт объединения (интеграции) отдельных деталей - компонентов - в конструктивно единый прибор, а также факт усложнения выполняемых этим прибором функций по сравнению с функциями отдельных компонентов.

Компоненты, которые входят в состав ИС и тем самым не могут быть выделены из нее в качестве самостоятельных изделий, называются элементами ИС или интегральными элементами. Они обладают некоторыми особенностями по сравнению с транзисторами и т.д., которые изготавливаются в виде конструктивно обособленных единиц и соединяются в схему путем пайки.

В основе развития электроники лежит непрерывное усложнение функций, выполняемых электронной аппаратурой. На определенных этапах становится невозможным решать новые задачи старыми средствами или, как говорят, на основе старой элементной базы, например с помощью электронных ламп или дискретных транзисторов. Основными факторами, лежащими в основе смены элементной базы, являются: надежность, габариты и масса, стоимость и мощность.

Особенностью изделий микроэлектроники является высокая степень сложности выполняемых функций, для чего создаются схемы, в которых количество компонентов исчисляется миллионами. Отсюда ясно, что обеспечить надежность функционирования при соединении компонентов вручную — задача невыполнимая. Единственным способом ее решения является применение качественно новых высоких технологий.

Для изготовления интегральных схем используется групповой метод производства и планарная технология.

Групповой метод производства заключается в том, что, во-первых, на одной пластине полупроводникового материала одновременно изготавливается большое количество интегральных схем; во-вторых, если позволяет технологический процесс, то одновременно обрабатываются десятки таких пластин. После завершения цикла изготовления ИС пластина разрезается в двух взаимно-перпендикулярных направлениях на отдельные кристаллы, каждый из которых представляет собой ИС.

Планарная технология - это такая организация технологического процесса, когда все элементы и их составляющие создаются в интегральной схеме путем их формирования через плоскость.

Одна или несколько технологических операций при изготовлении ИС заключается в соединении отдельных элементов в схему и присоединении их к специальным контактным площадкам. Поэтому необходимо, чтобы выводы всех элементов и контактные площадки находились в одной плоскости. Такую возможность обеспечивает планарная технология.

Финальная операция - корпусирование - это помещение ИС в корпус с присоединением контактных площадок к ножкам ИС (рис. 2.20).

 

 


Стоимость D одной ИС (одного кристалла) упрощенно можно вычислить следующим образом:

где А - затраты на научно-исследовательские и опытно-кон­струк­торские работы по созданию ИС; В - затраты на технологическое оборудование, помещение и др.; С - текущие расходы на материалы, электроэнергию, заработную плату, в пересчете на одну пластину; Z - количество пластин, изготовляемых до амортизации основных производственных фондов; X - количество кристаллов на пластине; Y - отношение годных ИС к количеству, запущенному в производство в начале его.

Кроме очевидных комментариев относительно затрат, нужно отметить следующее. Увеличение Y достигается созданием все более современной технологии, пожалуй, наиболее сложной и чистой среди многих новейших производств. Роста числа кристаллов X на пластине можно достичь двумя путями: увеличением размера пластины и уменьшением размеров отдельных элементов. Эти оба направления используются разработчиками.

В заключение заметим, что все константы, входящие в формулу, не являются ни постоянными, ни зависимыми друг от друга, поэтому анализ на минимум стоимости на самом деле является сложным и многофакторным.

Классификация ИС. Классификация ИС может производиться по различным признакам, ограничимся здесь лишь одним. По способу изготовления и получаемой при этом структуре различают два принципиально разных типа интегральных схем: полупроводниковые и пленочные.

Полупроводниковая ИС - это микросхема, элементы которой выполнены в приповерхностном слое полупроводниковой подложки (рис. 2.22). Эти ИС составляют основу современной микроэлектроники.

Пленочная ИС - это микросхема, элементы которой выполнены в виде разного рода пленок, нанесенных на поверхность диэлектрической подложки (рис. 2.21). В зависимости от способа нанесения пленок и связанной с этим их толщиной различают тонкопленочные ИС (толщина пленок до 1-2 мкм) и толстопленочные ИС (толщина пленок от 10-20 мкм и выше). Поскольку до сих пор никакая комбинация напыленных пленок не позволяет получить активные элементы типа транзисторов, пленочные ИС содержат только пассивные элементы (резисторы, конденсаторы и т.п.). Поэтому функции, выполняемые чисто пленочными ИС, крайне ограничены. Чтобы преодолеть эти ограничения, пленочную ИС дополняют активными компонентами (отдельными транзисторами или ИС), располагая их на той же подложке и соединяя с пленочными элементами. Тогда получается ИС, которую называют гибридной.

Гибридная ИС (или ГИС) - это микросхема, которая представляет собой комбинацию пленочных пассивных элементов и активных компонентов, расположенных на общей диэлектрической подложке. Дискретные компоненты, входящие в состав гибридной ИС, называют навесными, подчеркивая этим их обособленность от основного технологического цикла получения пленочной части схемы.

Еще один тип «смешанных» ИС, в которых сочетаются полупроводниковые и пленочные интегральные элементы, называют совмещенными.

Совмещенная ИС - это микросхема, у которой активные элементы выполнены в приповерхностном слое полупроводникового кристалла (как у полупроводниковой ИС), а пассивные нанесены в виде пленок на предварительно изолированную поверхность того же кристалла (как у пленочной ИС).

Совмещенные ИС выгодны тогда, когда необходимы высокие номиналы и высокая стабильность сопротивлений и емкостей; эти требования легче обеспечить с помощью пленочных элементов, чем с помощью полупроводниковых.

Во всех типах ИС межсоединения элементов осуществляются с помощью тонких металлических полосок, напыленных или нанесенных на поверхность подложки и в нужных местах контактирующих с соединяемыми элементами. Процесс нанесения этих соединительных полосок называют металлизацией, а сам «рисунок» межсоединений — металлической разводкой.

Полупроводни к овые ИС. В настоящее время различают следующие полупроводниковые ИС: биполярные, МОП (металл-окисел-полупроводник) и БИМОП. Последние представляют собой сочетание первых двух, и в них комбинируются положительные их качества.

Технология полупроводниковых ИС основана на легировании полупроводниковой (кремниевой) пластины поочередно донорными и акцепторными примесями, в результате чего под поверхностью образуются тонкие слои с разным типом проводимости р-n -переходы на границах слоев. Отдельные слои используются в качестве резисторов, а р-n -переходы - в диодных и транзисторных структурах.

Легирование пластины приходится осуществлять локально, т.е. на отдельных участках, разделенных достаточно большими расстояниями. Локальное легирование осуществляется с помощью специальных масок с отверстиями, через которые атомы примеси проникают в пластину на нужных участках. При изготовлении полупроводниковых ИС роль маски обычно играет пленка двуокиси кремния SiO2, покрывающая поверхность кремниевой пластины. В этой пленке специальными методами гравируется необходимая совокупность отверстий различной формы или, как говорят, необходимый рисунок (рис. 2.22). Отверстия в масках, в частности в окисной пленке, называют окнами.

Теперь кратко охарактеризуем составные части (элементы) полупроводниковых ИС. Основным элементом биполярных ИС является n-p-n -транзистор: на его изготовление ориентируется весь технологический цикл. Все другие элементы должны изготавливаться, по возможности, одновременно с этим транзистором, без дополнительных технологических операций.

Основным элементом МДП ИС является МДП-транзистор. Изготовление других элементов также подстраивается под базовый транзистор.

Элементы биполярной ИС необходимо тем или иным способом изолировать друг от друга с тем, чтобы они не взаимодействовали через кристалл.

Элементы МОП ИС не нуждаются в специальной изоляции друг от друга, так как взаимодействие между смежными МОП-транзисторами не имеет места. В этом - одно из главных преимуществ МОП ИС по сравнению с биполярными.

Характерная особенность полупроводниковых ИС состоит в том, что среди их элементов отсутствуют катушки индуктивности и, тем более, трансформаторы. Это объясняется тем, что до сих пор не удалось использовать в твердом теле какое-либо физическое явление, эквивалентное электромагнитной индукции. Поэтому при разработке ИС стараются реализовать необходимую функцию без использования индуктивностей, что в большинстве случаев удается. Если же катушка индуктивности или трансформатор принципиально необходимы, их приходится использовать в виде навесных компонентов.

Размеры кристаллов у современных полупроводниковых ИС достигают 20х20 мм2. Чем больше площадь кристалла, тем более сложную, более многоэлементную ИС можно на нем разместить. При одной и той же площади кристалла можно увеличить количество элементов, уменьшая их размеры и расстояния между ними.

Функциональную сложность ИС принято характеризовать степенью интеграции, т.е. количеством элементов (чаще всего транзисторов) на кристалле. Максимальная степень интеграции составляет 10б элементов на кристалле. Повышение степени интеграции (а вместе с нею и сложности функций, выполняемых ИС) — одна из главных тенденций в микроэлектронике.

Для количественной оценки степени интеграции используют условный коэффициент k = lg N. В зависимости от его значения инте­ральные схемы называются по-разному:

k ≤ 2 (N ≤; 100) - интегральная схема (ИС);

2 ≤ k ≤ 3 (N ≤ 1000) - интегральная схема средней степени интеграции (СИС);

3 ≤ k ≤ 5 (N ≤ 105) - большая интегральная схема (БИС);
k > 5 (N>105) - сверхбольшая интегральная схема (СБИС).

Ниже приведены английские обозначения и их расшифровки:

IС - Integrated Circuit;

MSI - Medium Scale Integration;

LSI - Large Scale Integration;

VLSI - Very Large Scale Integration.

Кроме степени интеграции, используют еще такой показатель, как плотность упаковки - количество элементов (чаще всего транзисторов) на единицу площади кристалла. Этот показатель, который характеризует главным образом уровень технологии, в настоящее время составляет до 500-1000 элементов/мм2.

Гибридные ИС. Пленочные, а значит, и гибридные ИС в зависимости от технологии изготовления делятся на толсто- и тонкопленочные.

Толстопленочные ГИС (обозначим их ТсГИС) изготавливаются весьма просто. На диэлектрическую пластинку-подложку наносят пасты разного состава. Проводящие пасты обеспечивают межсоединения элементов, обкладки конденсаторов и выводы к штырькам корпуса; резистивные — получение резисторов; диэлектрические - изоляцию между обкладками конденсаторов и общую защиту поверхности готовой ГИС. Каждый слой должен иметь свою конфигурацию, свой рисунок. Поэтому при изготовлении каждого слоя пасту наносят через свою маску - трафарет - с окнами в тех местах, куда должна попасть паста данного слоя. После этого приклеивают навесные компоненты и соединяют их выводы с контактными площадками.

Тонкопленочные ГИС (обозначим их ТкГИС) изготавливаются по более сложной технологии, чем ТсГИС. Классическая тонкопленочная технология характерна тем, что пленки осаждаются на подложку из газовой фазы. Вырастив очередную пленку, меняют химический состав газа и тем самым электрофизические свойства следующей пленки. Таким образом, поочередно получают проводящие, резистивные и диэлектрические слои. Конфигурация (рисунок) каждого слоя определяется либо трафаретом, как в случае ТсГИС, либо маской, подобно окисной маске в полупроводниковых ИС (см. рис. 1.4).

Навесные элементы в ТкГИС, как и в ТсГИС, приклеивают на поверхность готовой пленочной части схемы и соединяют с соответствующими контактными площадками элементов.

Степень интеграции ГИС не может оцениваться так же, как в случае полупроводниковых ИС. Тем не менее, существует термин большая ГИС (или БГИС), который означает, что в состав ГИС в качестве навесных компонентов входят не отдельные транзисторы, а целые полупроводниковые ИС.

 







Дата добавления: 2015-10-12; просмотров: 1597. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ОЧАГОВЫЕ ТЕНИ В ЛЕГКОМ Очаговыми легочными инфильтратами проявляют себя различные по этиологии заболевания, в основе которых лежит бронхо-нодулярный процесс, который при рентгенологическом исследовании дает очагового характера тень, размерами не более 1 см в диаметре...

Примеры решения типовых задач. Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2   Пример 1.Степень диссоциации уксусной кислоты в 0,1 М растворе равна 1,32∙10-2. Найдите константу диссоциации кислоты и значение рК. Решение. Подставим данные задачи в уравнение закона разбавления К = a2См/(1 –a) =...

Экспертная оценка как метод психологического исследования Экспертная оценка – диагностический метод измерения, с помощью которого качественные особенности психических явлений получают свое числовое выражение в форме количественных оценок...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Методика обучения письму и письменной речи на иностранном языке в средней школе. Различают письмо и письменную речь. Письмо – объект овладения графической и орфографической системами иностранного языка для фиксации языкового и речевого материала...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия