Студопедия — Модель ценообразования европейских опционов для всех распределений
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Модель ценообразования европейских опционов для всех распределений






Мы можем создать собственную модель ценообразования, лишенную каких-либо предположений относительно распределения изменений цены.

Сначала необходимо определить термин «теоретически справедливый», отно­сящийся к цене опционов. Мы будем говорить, что опцион справедливо оценен, если арифметическое математическое ожидание цены опциона к моменту истече­ния, выраженное на основе его текущей стоимости, не принимает во внимание воз­можного направленного движения цены базового инструмента. Смысл определения таков: «Какова стоимость данного опциона для меня сегодня как для покупателя опционов»?

 

Математическое ожидание (арифметическое) определяется из уравнения (1.03):

где рi = вероятность выигрыша или проигрыша попытки i;

ai= выигранная или проигранная сумма попытки i;

N =количество возможных исходов (попыток).

Математическое ожидание представляет собой сумму произведений каждого воз­можного выигрыша или проигрыша и вероятности этого выигрыша или проигры­ша. Когда сумма вероятностей рi больше 1, уравнение 1.03 необходимо разделить на сумму вероятностей рi.

Рассмотрим все дискретные изменения цены, которые имеют вероятность осуществления, большую или равную 0,001 в течение срока действия контракта, и по ним определим арифметическое математическое ожидание.

где С = справедливая с теоретической точки зрения стоимость опци­она, или арифметическое математическое ожидание;

рi = вероятность цены i по истечении срока опциона;

аi = внутренняя стоимость опциона (для кол-опциона: рыноч­ная цена инструмента минус цена исполнения опциона;

для пут-опциона: цена исполнения минус рыночная цена инструмента), соответствующая базовому инструменту при цене i.

Использование этой модели подразумевает, что, начиная с текущей цены, мы будем двигаться вверх по 1 тику, суммируя значения как в числителе, так и в зна­менателе до тех пор, пока вероятность i-ой цены (т.е. р.) не будет меньше 0,001 (вы можете использовать меньшее число, но я считаю, что 0,001 вполне доста­точно). Затем, начиная со значения, которое на 1 тик ниже текущей цены, мы будем двигаться вниз по 1 тику, суммируя значения как в числителе, так и в зна­менателе, пока вероятность i-ой цены (т.е. рi) не будет меньше 0,001. Отметьте, что вероятности, которые мы используем, являются 1-хвостыми, т.е., если веро­ятность больше чем 0,5, мы вычитаем это значение из 1. Интересно отметить, что значения вероятности рi можно менять в зависимости от того, какое распределение применяется, и оно не обязательно должно быть нормальным, то есть пользователь может получить теоретическую справедливую цену опциона для любой формы распределения! Таким образом, эта модель дает возмож­ность использовать устойчивое распределение Парето, t-распределение, распреде­ление Пуассона, собственное регулируемое распределение или любое другое рас­пределение, с которым, по нашему мнению, согласовывается цена при опреде­лении справедливой стоимости опционов.

Необходимо изменить модель таким образом, чтобы она выражала арифмети­ческое математическое ожидание на дату истечения срока опциона как следую­щую величину:

где С = справедливая с теоретической точки зрения стоимость опциона, или текущее значение арифметического математического ожида­ния при данном значении Т;

pi = вероятность цены i по истечении срока опциона;

аi =внутренняя стоимость опциона, соответствующая базовому инст­рументу при цене i;

R = текущая безрисковая ставка;

Т = доля года, оставшаяся до истечения срока исполнения, выражен­ная десятичной дробью.

Уравнение (5.11) является моделью ценообразования опционов для всех распре­делений и дает текущее значение арифметического математического ожидания опциона на дату истечения1. Отметьте, что модель можно использовать и для пут-опционов, имея в виду, что значения а. при каждом приросте цены i будут другими. Когда необходимо учесть дивиденды, используйте уравнение (5.04) для корректировки текущей цены базового инструмента. При определении вероятности цены i на дату истечения используйте именно эту измененную теку­щую цену. Далее следует пример использования уравнения (5.11). Допустим, мы обнару­жили, что приемлемой моделью, описывающей распределение логарифмов изме­нений цены товара, опционы на который мы хотим купить, является распределе­ние Стьюдента2. Для определения оптимального числа степеней свободы распре­деления Стьюдента мы использовали тест К-С и пришли к выводу, что наилучшее значение равно 5. Допустим, мы хотим определить справедливую цену колл-опциона на 911104 (дата истечения срока опциона — 911220). Цена базового инструмента равна 100, цена исполнения опциона также равна 100. Предположим, годовая волатильность составляет 20%, безрисковая ставка 5% и год равен 260,8875 дням (мы не учитываем праздники, которые выпадают на рабочий день, например День Бла­годарения в США). Далее допустим, что минимальный тик по этому предполага­емому товару равен 0,10. Используя уравнения (5.01), (5.02) и (5.07) для переменной Н, мы найдем, что справедливая цена равна 2,861 как для колл-опциона, так и для пут-опциона с ценой исполнения 100. Таким образом, эти цены опционов являются справедли­выми ценами в соответствии с моделью товарных опционов Блэка, которая до­пускает логарифмически нормальное распределение цен. Если мы будем исполь­зовать уравнение (5.11), то должны сначала рассчитать значения pg. Их можно по­лучить из фрагмента программы, написанной на языке Бейсик и представленной в приложении В. Отметьте, что необходимо знать стандартное значение, т.е. пере­менную Z, и число степеней свободы, т.е. переменную DEGFDM. Прежде чем мы обратимся к этой программе, преобразуем цену i в стандартное значение по сле­дующей формуле:

где i = цена, соответствующая текущему состоянию процесса суммиро­вания;

V = годовая волатильность, выраженная стандартным отклонением;

Т = доля года, оставшаяся до истечения срока исполнения, выражен­ная десятичной дробью;

1п() = функция натурального логарифма.

 

Уравнение (5.12), написанное на БЕЙСИКе, будет выглядеть следующим образом:

Переменная U представляет собой текущую цену базового инструмента (с учетом дивидендов, если это необходимо). Вероятность для распределения Стьюдента, найденная с помощью програм­мы из приложения В, является 2-хвостой. Нам надо сделать ее 1-хвостой и выра­зить как вероятность отклонения от текущей цены (то есть ограничить ее 0 и 0,5). Это можно сделать с помощью двух строк на БЕЙСИКе:

Таким образом, для 5 степеней свободы справедливая цена колл-опциона равна 3,842, а справедливая цена пут-опциона равна 2,562. Эти величины отличаются от значений, полученных с помощью более традиционных моделей. Причин здесь несколько.

Во-первых, более толстые хвосты распределения Стьюдента с 5 степенями свободы дадут более высокую справедливую стоимость колл-опциона. Вообще, чем толще хвосты распределения, тем больше получается цена колл-опциона. Если бы мы использовали 4 степени свободы, то получили бы еще большую цену колл-опциона.

Стоимость пут-опциона и стоимость колл-опциона значительно отличаются, в то время как в традиционных моделях стоимость пут-опциона и колл-опциона эквивалентна. Этот момент требует некоторого пояснения.

Справедливую стоимость пут-опциона можно найти из цены колл-опциона с той же ценой исполнения и датой истечения (или наоборот) по формуле пут-колл паритета:

где Р = справедливая цена пут-опциона;

С = справедливая цена колл-опциона;

Е = цена исполнения;

U = текущая цена базового инструмента;

R = безрисковая ставка;

Т = доля года, оставшаяся до истечения срока исполнения, выражен­ная десятичной дробью.

Когда равенство (5.13) не выполняется, появляется возможность арбитража. Из (5.13) мы видим, что цены, полученные из традиционных моделей, эквивалент­ны, когда Е - U = 0.

Давайте заменим переменную U в уравнении (5.13) ожидаемой ценой базо­вого инструмента на дату истечения срока опциона. Ожидаемая стоимость ба­зового инструмента может быть определена с помощью уравнения (5.10) с учетом того, что в этом случае а. просто равно i. В нашем примере с DEGFDM = 5 ожидаемая стоимость базового инструмента равна 101,288467. Это происходит потому, что минимальная цена инструмента равна 0, в то время как ограничения цены сверху не существует. Движение цены со 100 до 50 так же вероятно, как и движение со 100 до 200. Следовательно, стоимость колл-опционов будет выше, чем стоимость пут-опционов. Неудивительно, что ожидаемая стоимость базового инструмента на дату истечения должна быть больше, чем его текущая цена, — это вполне согласуется с предположением об инфляции. Когда в уравнении (5.13) мы заменим значение U (текущую цену базового ин­струмента) на значение ожидаемой стоимости на дату истечения, мы сможем рассчитать справедливую стоимость пут-опциона:

Р = 3,842 + (100 - 101,288467) * ЕХР(-0,05 * 33/260,8875) = 3,842+-1,288467 *ЕХР(-0,006324565186) = 3,842 + -1,288467 * 0,9936954 = 3,842 + 1,280343731 =2,561656269

Это значение согласуется со стоимостью пут-опциона, полученной из уравнения (5.11).

Остается одна проблема: если пут-опционы и колл-опционы с одной ценой исполнения и сроком истечения оценены согласно уравнению (5.11), тогда суще­ствует возможность арбитража. На самом деле LJ в (5.13) является текущей ценой базового инструмента, а не ожидаемым значением базового инструмента на дату истечения. Другими словами, если текущая цена равна 100 и декабрьский колл-опцион с ценой исполнения, равной 100, стоит 3,842, а пут-опцион с ценой ис­полнения, равной 100, стоит 2,561656269, то существует возможность арбитража, исходя из (5.13).

Отсутствие паритета «пут-колл» при наличии наших заново полученных цен опционов предполагает, что вместо покупки колл-опциона за 3,842 нам следует открыть эквивалентную позицию, купив пут-опцион за 2,562 и базо­вый инструмент.

Проблема решится, если мы сначала рассчитаем ожидаемую стоимость базо­вого инструмента по уравнению (5.10) с учетом того, что аi просто равно i (в нашем примере с DEGFDM = 5 ожидаемая стоимость базового инструмента рав­на 101,288467), и вычтем текущую цену базового инструмента из полученного значения: 101,288467 - 100= 1,288467. Теперь, если мы вычтем это значение из каждого значения а., т.е. внутренней стоимости из (5.11), и примем любые по­лучившиеся значения менее 0 равными 0, тогда уравнение (5.11) даст нам теоре­тические значения, которые согласуются с (5.13). Таким образом, арифметичес­кое математическое ожидание по базовому инструменту заменит текущую цену базового инструмента. В нашем примере (распределение Стьюдента с 5 степе­нями свободы) мы получим стоимость пут-опциона и колл-опциона с ценой исполнения 100, равную 3,218. Таким образом, наш ответ согласуется с уравне­нием (5.13), и возможность арбитража между этими двумя опционами и их базо­выми инструментами отсутствует.

Когда мы используем распределение, которое основано на значениях ариф­метического математического ожидания базового инструмента на дату истече­ния и значение этого ожидания отличается от текущей стоимости базового ин­струмента, мы должны вычесть разность (ожидание - текущая стоимость) из внутренней стоимости опциона и приравнять нулю значения меньше нуля. Та­ким образом, для любой формы распределения уравнение (5.11) дает нам ариф­метическое математическое ожидание опциона на дату истечения, при условии, что арифметическое математическое ожидание по базовому инструменту равно его текущей цене (то есть направленное движение цены базового инструмента не предполагается).







Дата добавления: 2015-10-12; просмотров: 355. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Краткая психологическая характеристика возрастных периодов.Первый критический период развития ребенка — период новорожденности Психоаналитики говорят, что это первая травма, которую переживает ребенок, и она настолько сильна, что вся последую­щая жизнь проходит под знаком этой травмы...

РЕВМАТИЧЕСКИЕ БОЛЕЗНИ Ревматические болезни(или диффузные болезни соединительно ткани(ДБСТ))— это группа заболеваний, характеризующихся первичным системным поражением соединительной ткани в связи с нарушением иммунного гомеостаза...

Решение Постоянные издержки (FC) не зависят от изменения объёма производства, существуют постоянно...

Принципы, критерии и методы оценки и аттестации персонала   Аттестация персонала является одной их важнейших функций управления персоналом...

Пункты решения командира взвода на организацию боя. уяснение полученной задачи; оценка обстановки; принятие решения; проведение рекогносцировки; отдача боевого приказа; организация взаимодействия...

Что такое пропорции? Это соотношение частей целого между собой. Что может являться частями в образе или в луке...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия