Студопедия — Цифроаналоговые и аналого-цифровые преобразователи
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Цифроаналоговые и аналого-цифровые преобразователи






Сигнал любой физической природы (температура, давление, освещенность) с помощью специальных датчиков может быть преобразован в электрическое напряжение или ток. Это позволяет проводить дальнейшую обработку информации, содержащейся в сигнале, с помощью электронных устройств. Выходное напряжение (ток) датчиков обычно пропорционально(ен) уровню преобразуемого сигнала и меняется непрерывно. Такие сигналы относятся к группе аналоговых.

Сигналы цифровых систем представляют собой наборы двухуровневых последовательностей. Их совокупность в текущий момент времени может быть интерпретирована как двоичный код числа, соответствующий значению некоторой величины.

Таким образом, при необходимости обработкиинформации в цифровых вычислительных машинах данные об уровне сигнала необ­ходимо представить в соответствующей (цифровой) форме. В ряде случаев полученные после цифровой обработки результаты требуется преобразовать в управляющие напряжения.

Вследствие существенных отличий и особенностей цифровых и непрерывно меняющихся сигналов для их преобразования из одной формы представления в другую используются специальные устройства – аналого-цифровые и цифроаналоговые преобразователи (АЦП и ЦАП). Первые осуществляют преобразование непрерывно меняющегося напряжения в эквивалентные ему значения цифровых кодов, а вторые трансформируют поступающие на его входы кодовые последовательности в соответствующие уровни выходных напряжений или токов.

Аналоговый сигнал, представляемый непрерывной функцией и определенный в любой момент времени, может быть отображен в виде соответствующею графика (рис. 1).

 

Рис. 1. Графическое представление аналогового сигнала

 

Любые количественные измерения подразумевают использование эталона, с которым в выбранный момент времени производится сравнение значения измеряемого сигнала рис. 2.

Рис. 2. Использование набора эталонов для измерения уровня сигнала


В этом случае его величина может быть представлена числом, равным количеству эталонов, содержащихся в величине сигнала. Для представленной на рис. 2 ситуации , а . После преобразования полученных наборов чисел в двоичные коды информация о величине сигнала окажется представленной в цифровой форме и далее может обрабатываться в цифровых системах.

Однако при изменении величин сигналов возникают ошибки, связанные с тем, что измеряемый сигнал в большинстве случаев меняется непрерывно, а совокупность эталонов представляет собой дискретный набор значений. Из-за этого в некоторые моменты времени величина измеряемого сигнала не будет соответствовать целому числу эталонов, к примеру, . В таких случаях результат измерения округляют до бли­жайшего целого значения, т.е. принимают, что величина равна либо , либо . Данная процедура называется квантованием, а величина эталона – шагом квантования. При этом бесконечное множество значений сигнала отображается на конечное множество уровней квантования.

Таким образом, процесс количественных измерений (преобразования анало­говой формы сигнала в цифровую) связан с появлением по­грешности, которая называется шумом квантовании и поабсолютной вели­чине не превышает . Погрешность может быть снижена путем уменьшения шага квантования но свести ее к нулю нельзя. Погрешности такого типа относятся к классу методических погрешностей.

Вторая проблема, возникающая при количественных измерениях аналоговых сигналов, заключается в том, что процесс измерения требует некоторого вре­мени, поэтому отсчеты значений сигнала могут быть получены лишь через определенные временные интервалы. Процесс представления сигнала в виде совокупности таких отсчетов называется дискретизацией. Очевидно, чем чаще берутся отсчеты, тем меньше будут потери информации о поведении сигнала в промежутках между ними.

В то же время из теоремы Котельникова следует, что если ширина спектра сигнала ограничена частотой , то при интервалах между отсчетами , по их совокупности можно полностью восстановить исходный сигнал. Таким образом, если отсчеты отстоят друг от друга на интервал, меньший, чем , то погрешностей, связанных с дискретизацией, не будет. Однако сигналы с ограниченным спектром являются математической абст­ракцией, поэтому в ходе преобразования формы представления сигналов из аналоговой в цифровую возникают ошибки как из-за дискретизации, так и вследствие квантования.

Процесс аналого-цифрового преобразования предполагает выполнение следующих операций: дискретизация – формирование выборок (отсчетов) мгновенных значений сигнала, квантование – определение количества

 

эталонных уровней в величине выборки и кодирование – преобразование полученного числа в соответствующие кодовые комбинации.

В ходе обратного (цифроаналогового) преобразования формируется сигнал в виде напряжения или тока, пропорциональный числу, представляемому, как правило, двоичным кодом. Уровень выходного сигнала при этом может быть записан в виде , где цена единицы младшего разряда, т. е. напряжение, на которое возрастает или уменьшается выходной сигнал при изменении управляющего кода на единицу.

Теоретически в ходе преобразования сигнала из цифровой формы представления в аналоговую погрешности отсутствуют. Однако, как и в любых реальных устройствах, на точности преобразования сказывается неидеальностъ узлов, входящих в их состав.

Так как при изменении формы представления информация, содержащаяся в исходном сигнале, не меняется, то при последовательном соединении двух идеальных устройств, одно из которых выполняет функцию аналого-цифрового (АЦП), а другое – цифроаналогового преобразователя (ЦАП), сигналы на входе и выходе такой системы (рис. 3) должны быть идентичны. Однако из-за возникновения ошибок при дискретизации и квантовании выходной сигнал в реальных системах будет отличаться от входного .

 

 

 

 

Рис. 3. Трансформация сигнала при прохождении через реальную

и идеальную систему АЦП-ЦАП

 

Рис. 4. Структура сигнала после дискретизации и квантования

 

Характер этих отличий можно пояснить следующим образом. При аналого-цифровом сигнале преобразовании формирование кода осуществляется в соответствии с соотношением , где ent – функция, означающая целую часть числа, Uвх – входное напряжение, U0 – шаг квантования. В этом случае, если сигнал имеет форму, представленную на рис. 4, в моменты времени, кратные интервалу дискретизации , будут формироваться коды соответствующих выборок. Обычно они фиксируются в регистрах памяти и сохраняются, как показано пунктирными линиями, до получения следующего отсчета.

Если данную последовательность кодов подать на цифроаналоговый преобразователь с ценой единицы младшего разряда U0. Равной шагу квантования, то на его выходе сформируется сигнал ступенчатой формы. Он будет совпадать с исходным лишь в точках где уровень входного сигнала равен целому числу шагов квантования. В остальных точках появляются ошибки преобразования, связанные со спецификой трансформации аналогового входного сигнала в цифровую форму.

 

ЦАП с суммированием весовых токов

 

Таблица 6 Таблица истинности для ЦАП

С Ц В Авых
Д С В А  
           
          0,2
          0,4
          0,6
          0,8
          1,0
          1,2
          1,4

 

1. Подадим на входы ЦАП двоичную комбинацию 0000, на выходе получим 0.

Подадим на вход ЦАП двоичную комбинацию 0001.

2. Uвых = КuUвх = 10/150×3 = 0,2

Подадим на вход ЦАП двоичную комбинацию 0010.

3. Uвых = КuUвх = 10/75×3 = 0,4

………………………………………..

 

 

 
 

 

 


Рис.14 Принципиальная схема ЦАП

 

Если все переключатели на входе ЦАП будут в положении 1, т. е. двоичная комбинация будет 1111 Uвых = 3 В Кu = 1.

 

.

В качестве входного можно использовать любое напряжение питания ±10 В.

Можно добавить разрядный переключатель веса 16, в этом случае потребуется резистор R5 с сопротивлением, равным 0,5 R4 (R5 = 9,35 кОм). При этом необходимо изменить сопротивление резистора обратной связи до 5 кОм. На вход ЦАП можно подавать пятиразрядный двоичный код. Данная схема ЦАП имеет низкую точность преобразования.

 

ЦАП лестничного типа

 

Таблица истинности остается прежней, только шаг DU = 0,25 В.

ЦАП состоит из резисторной схемы и суммирующего усилителя. Схема обеспечивает учет весового множителя на двоичных входах, ее иногда называют схемой R – 2R или схемой лестничного типа. Преимущество состоит в том, что используются резисторы двух номиналов.

 
 

 


Рис.15. Принципиальная схема ЦАП-лесничного типа

.

 

Аналого-цифровой преобразователь с динамической компенсацией

АЦП – это шифратор специального типа, преобразующий аналоговый сигнал на входе в двоичное слово определенной разрядности на выходе.

 

Таблица 7 Таблица истинности для АЦП

Строка Аналог. вход Двоичный выход
Д С В А
           
  0,2        
  0,4        
  0,6        
  0,8        
  1,0        
- - - - - -
  3,0        

Как и в любом другом шифраторе необходимо определить ожидаемые значения входных сигналов.

Структурная схема АЦП, реализующая связь входных и выходных величин, рис. 16 содержит компаратор, логический элемент И, двоично-десятичный счетчик (ДДС) и ЦАП.

 

 
 

 

 


Х

 

 

Рис.16 АЦП с динамической компенсацией

 

К выходу АЦП приложено аналоговое напряжение. Компаратор «проверяет» величину напряжения, поступающего от АЦП. Если Uвх на входе «А» компаратора больше напряжения на входе «В», то с помощью схемы «И» разрешается прохождение тактовых (счетных) импульсов на вход двоично-десятичного счетчика. Счетчик подсчитывает эти импульсы, в результате счета увеличивается двоичное число на выходе. Счет продолжается, если UвхА > UвхВ. Если это условие не выполняется, т. е. напряжение обратной связи с выхода ЦАП превысит аналоговое входное напряжение, в этой точке компаратор останавливает счетчик, который сбросится в нулевое состояние, и счет начнется снова.

Предположим, что на выходе компаратора в точке Х действует уровень, меньший единицы. Двоично-десятичный счетчик находится в положении 0000 и к аналоговому входу приложено напряжение 0,55 В. Логическая единица открывает логический элемент «И», и первый импульс от тактового генератора появляется на входе ДДС, который переходит в состояние 0001. Полученная двоичная комбинация появляется на индикаторе и на входе ЦАП.

Согласно таблице истинности двоичному числу 0001 соответствует сигнал 0,2 В на выходе. Это напряжение подается на вход «В» и сравнивается с аналоговым сигналом на входе «А» (0,55 и 0,2 В): UА > UВ, поэтому компаратор продолжает вырабатывать сигнал логической «1», который удерживает элемент «И» в открытом состоянии. На вход счетчика поступает следующий счетный импульс, и на выходе получим комбинацию 0010, что соответствует выходному напряжению ЦАП 0,4 В. Счет продолжается пока на выходе не будет 0,6 В, что соответствует двоичной комбинации 0011. Поскольку 0,6 > 0,5 В и компаратор вырабатывает логический «0», запирая элемент «И», ни один счетный импульс не может достичь счетчика.

Данный АЦП называется АЦП с динамической компенсацией, что отражает наличие в схеме линейно-нарастающего напряжения.

 

 







Дата добавления: 2015-10-12; просмотров: 2425. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Тема 5. Анализ количественного и качественного состава персонала Персонал является одним из важнейших факторов в организации. Его состояние и эффективное использование прямо влияет на конечные результаты хозяйственной деятельности организации.

Билет №7 (1 вопрос) Язык как средство общения и форма существования национальной культуры. Русский литературный язык как нормированная и обработанная форма общенародного языка Важнейшая функция языка - коммуникативная функция, т.е. функция общения Язык представлен в двух своих разновидностях...

Патристика и схоластика как этап в средневековой философии Основной задачей теологии является толкование Священного писания, доказательство существования Бога и формулировка догматов Церкви...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Оценка качества Анализ документации. Имеющийся рецепт, паспорт письменного контроля и номер лекарственной формы соответствуют друг другу. Ингредиенты совместимы, расчеты сделаны верно, паспорт письменного контроля выписан верно. Правильность упаковки и оформления....

БИОХИМИЯ ТКАНЕЙ ЗУБА В составе зуба выделяют минерализованные и неминерализованные ткани...

Studopedia.info - Студопедия - 2014-2024 год . (0.008 сек.) русская версия | украинская версия