Студопедия — Любые замечания по изложенному материалу будут приняты с благодарностью.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Любые замечания по изложенному материалу будут приняты с благодарностью.






Любые замечания по изложенному материалу будут приняты с благодарностью.

Слабые дети - последствия применения вакцин.
Неповреждённая и нормально функционирующая кожа служит надёжной защитой от возбудителей инфекционных болезней. Повреждение кожных покровов, первого защитного барьера - легкий путь для проникновения патогенных начал. Любое нарушение кожных покровов тела, их травмирование в первые дни жизни дезорганизует прежде всего ЦНС, иммунную и эндокринную системы, что в свою очередь приводит к полному снижению защиты организма перед различными инфекционными агентами. Вспомним важнейший момент - как ни тонка игла, она вырезает ткани, повреждая их структуру, границы и клетки. Из травмированных клеток в омывающую внутреннюю среду, а оттуда в кровь изливаются вещества повреждённых и разрушенных клеток и тканей, известные своим негативным вмешательством во многие сферы жизнедеятельности развивающегося организма. В канале, созданном иглой, образуется очаг безмикробного (микробного) воспаления. Сколько же необходимо сил и энергии новорожденному, его иммунной системе, чтобы восстановиться после стресса, зарубцевать травмированные кожные раны, отрегулировать потерянное состояние, заложенное природой? В первые дни жизни, сам укол может вызвать у новорожденного коллаптоидное состояние и шок. С грудными детьми требуется повышенная осторожность при введении каких бы то ни было лекарственных средств, поскольку у них очень тонкая, ранимая кожа, с не сформировавшейся подкожной клетчаткой и множеством расположенных по поверхности сосудов. Для определения возможного развития таких реакций следует ориентироваться на вегетативные показатели ребёнка: реакцию на прикосновение, расположение, температуру кожи, потливость, частоту пульса, его наполнение, глубину дыхания, цвет кожи лица, окраску носогубного треугольника. Необходимо следить за индивидуальными особенностями эмоциональной реакции новорожденного. Логично было бы признать, что перед приёмом каких либо вакцин, предварительно не мешало бы сделать иммунодиагностику младенца и посмотреть наличие клеток внутренней защиты, которые будут вырабатывать антитела. Только после этого теста можно было бы рекомендовать или не рекомендовать родителям, склонным полностью доверять врачам, нужно ли делать их малышу вакцину или нет. Возможно, что и календарь вакцинаций новорожденного - это особая тема для обсуждения и тщательного индивидуального изучения. Кто этим когда занимался? Кто об этом вообще думал? ПРОТЕЗИРОВАНИЕ с помощью вакцин иммунной системы без намёка на научное обоснование этой опасной процедуры -- полностью или частично разрушает защиту детского организма в борьбе со многими инфекционными болезнями. Без предварительной иммунодиагностики это риск сделать из нормального, здорового младенца - инвалида!

Иммунореактивность новорожденных.
У плода к моменту рождения лимфатические узлы и селезёнка ещё не вполне развиты, за исключением случаев внутриутробного контакта с антигенами, например, при краснухе и других инфекциях матери. Способность отторжения трансплантатов и синтезу специфических антител в момент рождения вполне развита, но общий уровень иммуноглобулинов при отсутствии внутриматочных инфекций - низок, за исключение IgG. Высокий уровень IgG обусловлен его трансплацентарным переносом от матери к плоду. Иммуноглобулины других классов не проходят через плаценту, а низкий, но значимый уровень IgМ в пуповинной крови обусловлен его синтезом в организме самого ребёнка. К девятимесячному возрасту плода уровень IgМ достигает значений характерных детям старшего возраста. Экспериментально доказано, что в крови новорожденных так же обнаруживаются следовые количества IgA, IgD и IgE. В первые месяцы жизни, когда собственная лимфоидная система плода ещё не достаточно развита, защиту от инфекций обеспечивают материнские антитела, проникающие через плаценту, а после рождения, защиту обеспечивают антитела поступающие с молозивом и всасывающиеся в кишечнике. Основной класс иммуноглобулинов - это секреторный IgА. Он не всасывается в кишечнике, а остается здесь, защищая слизистые оболочки. Интересно то, что эти антитела направляются к бактериальным и вирусным антигенам, по различным причинам попадающим в кишечник. Кроме того, клетки, продуцирующие IgА к чужеродным антигенам, мигрируют в ткань молочной железы, откуда продуцируемые ими антитела попадают в молоко.

Фальсификаторы.
Прежде всего, необходимо знать, что какими бы впечатляющими ни были уникальные события 200-летней давности, до населения земного шара донесена полуправда. На самом деле, только совокупность противоэпидемических и противоэпизоотических мероприятий, профессионализм и использование достижений современной иммунологии, могут помочь решить задачи противоинфекционной защиты населения и в частности детей. Только так может быть создано санитарно-эпидемиологическое благополучие населения и государства в целом. Нельзя "ликвидировать" ни одну инфекционную болезнь "только с помощью вакцинаций". Мол, получишь вакцину и будешь в полной безопасности для себя и всех окружающих. Мало сказать, что это кем-то специально придуманный миф, это - УТОПИЯ очередного "всеобщего оздоровления" в светлом дезинфекционном рае. Иллюзия, что все инфекционные агенты будут побеждены, стоит лишь провакцинировать "всех подряд". Одна проблема - одно решение, порождает преступный подход к этому профилактическому медицинскому вмешательству в природу человека. Однако, именно такая система "из-за удобства с организационной точки зрения" продолжает пропагандироваться армией врачей и чиновников от системы здравоохранения, в той или иной форме причастных к вакцинациям. Возникает дьявольское наваждение, что без прививок ребёнок вроде бы неполноценный или изгой, хотя на самом деле - всё совсем наоборот. В декабрьском номере "Медикл пост" (1994 г.) канадский врач Гайлейн Ланкто, автор бестселлера "Медицинская мафия", заявила: "Медицинские власти продолжают всем нам лгать. Вакцины - это экологическая катастрофа для иммунной системы не только новорожденных. На самом деле, именно в них кроется причина многих болезней. Антигены вносимые с вакцинами изменяют наш генетический код... Через сто лет мы будем знать, что самым большим преступлением против человечества были вакцины". После тщательного изучения обширной медицинской литературы, др Вера Шайбнер заключила, что: "Нет доказательств способности вакцин предотвращать какие-либо болезни. Наоборот, есть огромное количество доказательств того, что они являются причиной серьёзных побочных реакций острых и хронических болезней". Врач Барт Классен утверждает: "Мои данные доказывают, что исследования, на которые обычно ссылаются как доказывающие пользу вакцинации, грешат таким количеством недостатков, что невозможно утверждать, действительно ли прививки принесли спасение кому-либо и всему обществу в целом. На это вопрос можно ответить лишь после соответствующих тщательных исследований, которые пока не проводилось. Огромным упущением прежних исследований является то, что они не прослеживали последствий вакцинаций на протяжении достаточного длительного времени и их острая и хроническая токсичность также не изучалась. Американское общество микробиологии поддерживает мои исследования, признавая тем самым необходимость серьёзного анализа сложившейся ситуации и развитие диагностики". Диагностика - это фильтр, выявляющий и отсеивающий лиц, которых не надо вакцинировать. И таких будет немало. Например, при дифтерии, в случае циркуляции возбудителя среди населения, отмечается феномен "бытовой" иммунизации, то есть образование иммунитета естественным путем без отмечаемого заболевания. Поэтому, в том числе и взрослое население, вакцинировать можно и нужно только после тщательной диагностики, опроса и осмотра. Ещё далеко не всем родителям и врачам известно, что детская инвалидность: аутизм, нарушение опорно-двигательного аппарата, функции печени и почек, ДЦП, рахит и дистрофия, сахарный диабет, астма, аллергия и многие другие болезни, могут быть следствием неграмотного подхода в вопросах вакцинации. Кто из врачей когда-нибудь задумывался об отравляющем воздействии анатоксинов на организм и взаимодействии их между собой в составе комплексных вакцин. Возможно, эта проблема могла бы стоять на повестке дня уже много лет назад. Подлинно доказана антигенная конкуренция например, дифтерийного и столбнячного анатоксинов при совместном их введении в организм, а также введение коклюшного анатоксина, который не только препятствует выработке иммунитета, в ходе вакцинации, а и отравляет организм. Существующая классификация по токсическому действию биопрепаратов группирует отравляющее вещества по результатам их воздействия на организм и внешним признакам поражения. А вот ещё один пример из истории современной Америки, комментировать который я не берусь. Мне показалось интересным связать ненадолго свою тему с темой биологического терроризма. Ведь в нашей повседневной жизни и такие вопиющие факты имеет место. Антракс - самое популярное слово в Америке. После того как в США были зафиксированы факты распространения сибирской язвы с помощью писем, почтовые ведомства многих стран мира приняли повышенные меры безопасности. Теперь, прежде чем вскрыть письмо, любой американец тщательнейшим образом осматривает его. Страну охватила настоящая паника. В зданиях федеральных властей объявлен карантин. Семь тысяч нью-йоркских почтальонов и 4,5 тысячи их коллег в столице снабжены резиновыми перчатками и респираторами и на всякий случай принимают антибиотики. Всего заразились 16 человек, четверо из них скончались. Определенно установлено, что бактерии во всех известных зараженных письмах относятся к одному и тому же штамму, который называется "эймс". Он использовался в свое время в военных разработках и получил имя по названию лаборатории в штате Айова. Это самая распространенная в США разновидность бактерий сибирской язвы. В 1995 году ФБР задержало некоего Ларри Уэйна Харриса, члена ультраправой организации "Арийская нация". Харрис от имени несуществующей лаборатории в Огайо (Small Animal Microbiology Laboratory) заказал за 240 долларов в специальной "библиотеке вирусов" - American Type Culture Collection (Роквилл, Mэриленд) - культуру бубонной чумы. Когда заказ не был доставлен в оговоренные три дня, Харрис проявил нервозность и стал названивать в American Type Culture Collection. Сотрудникам "библиотеки вирусов" это показалось подозрительным, и они сообщили о Харрисе в ФБР. Харриса арестовали, а у него в доме было найдено множество пробирок с питательной средой для выращивания вирусов. В бардачке автомобиля обнаружились и три присланных по почте образца возбудителя бубонной чумы. Харрис заявил, что не желал никому зла, а биоматериалы нужны ему были для работы над книгой. Действительно, в том же году Харрис на свои собственные средства издал книгу "Биологическая война: главная угроза Северной Америке". В итоге он был приговорен к 18 месяцам тюрьмы условно и 200 часам общественных работ. Между тем в своей книге, а затем в ряде интервью Харрис фактически обнародовал руководство по производству бактериологического оружия. Он утверждал, что можно легко получить споры сибирской язвы. Для этого достаточно пойти в библиотеку и по подшивкам старых газет узнать о том, где были отмечены очаги сибирской язвы. Затем следует отправиться туда и выяснить у местных жителей, где именно зарывали больных животных. После этого раскопать могильник, взять кусочек шкуры животного и вырастить колонию бактерий. Харрис утверждал, что сам проделал все это в окрестностях Кливленда, где в 1950 году у нескольких овец была диагностирована сибирская язва. Один из местных жителей якобы показал ему место, в котором были зарыты трупы животных и даже помог раскопать захоронение. Полученный "материал", как утверждал Харрис, был быстро переработан. В результате получился раствор, который можно было распылять с самолета. Важно то, что член экстремистской организации имел необходимые навыки для выращивания вирусов и явно интересовался вопросами их "боевого" применения. Любопытно, что Харрис заявлял также, что он работал в секретных лабораториях ЦРУ и был "невидимым борцом" с вирусами, которыми Ирак якобы пытался нанести ответный удар США во время войны в Персидском заливе. Миллионы американцев живут в постоянном напряжении. Многие вашингтонцы заклеили щели во входных дверях, куда обычно опускают почту, и взамен выставили у входа прозрачные пластиковые ящики, содержимое которых они долго изучают, прежде чем коснуться. По стране в два раза вырос спрос на антибиотики, несмотря на предупреждения врачей не заниматься самолечением. Намного увеличилась выписка рецептов на успокоительные средства. Страничка в Интернете, посвященная сибирской язве и методам борьбы с нею, стала самой посещаемой. В библиотеках разобраны медицинские учебники и популярные брошюры по эпидемиологическим заболеваниям.

Применения вакцин в ветеринарии и медицине.
Метод вакцинации (от лат. vacca - корова), разработан в конце XVIII в. английским врачом E.Jenner. Он обратил внимание на тот факт, что доярки, а так же работницы, ухаживавшие за больными животными, иногда заболевали в крайне слабой форме оспой коров, но при этом никогда не болели натуральной оспой. Подобное наблюдение давало исследователю реальную возможность борьбы с болезнью людей. В 1796г. E.Jenner решился апробировать метод вакцинации коровьей оспой. Он заметил, что если ввести содержимое оспины коровы, в котором присутствуют болезнетворные бактерии, в кожный надрез человеку, то вакцинированный не заболеет натуральной оспой. Эксперимент прошел успешно, с тех пор способ вакцинации по E.Jenner нашел широкое применение во всем мире. Безусловно, необходимость вакцинации в сельском хозяйстве, животноводстве и ветеринарии никто не опровергает, так как это связано с экономическими показателями роста, прироста и производства сельскохозяйственной продукции. Жизнь животного коротка, поэтому было бы не правильным и экономически не выгодным, чтобы животные переболевали множеством инфекционных болезней от которых уже разработаны меры профилактики. Применение вакцин в животноводстве не причиняет особого вреда здоровью животных. Именно в животноводстве, птицеводстве и других областях сельского хозяйства, связанных с производством продуктов питания населению, профилактика болезней с помощью вакцин необходима! Сколько животных - столько и болезней. И если бы человеку передавались все те болезни, которыми болеют животные, то наша популяция давно бы уменьшилась и на земле господствовали опять динозавры. В природе не все болезни одного вида животных передаются другим. Именно это предусмотрела матушка природа. Люди живут в лучших санитарно-гигиенических условиях и тем самым разрывают круг инфекционных болезней передающихся от животных к человеку. Если мы посмотрим сколько есть на сегодняшний день болезней животных опасных для здоровья человека, то в целях безопасности как содержания и разведения животных, так и использования продуктов животноводства в пищу, вакцинация отдельных групп сельскохозяйственных животных просто необходима. Возьмём например, болезни животных передающиеся от животных к человеку: коровье бешенство, сибирская язва, туберкулёз, бруцеллёз, сальмонеллёз, бешенство, лептоспироз, туляремия, сап, птичий грипп, лейкозы животных, малярия, хламидиозные инфекции, инфекции паразитов крови, многие паразитарные заболевания и множество других инфекций, список которых будет очень большим. А вот инфекции, которые являются внутривидовыми и не передаются человеку: вирусные болезни свиней, вирусные болезни крупного рогатого скота, вирусные болезни лошадей, вирусные болезни собак и т.д. Значит многие видовые вирусные болезни не распространяются на людей. А вот микробы и кишечные, легочные паразиты, более приспособлены к адаптации в хороших санитарных условиях и паразитированию в человеческом теле. Далеко ходить не надо, например, болезнь кошачьих царапин или укус собаки может привести к локальному микробному заражению места укуса. Многие животные являются переносчиками многих инфекционных и паразитарных болезней, а основным хозяином их является человек. Например, трихинеллёз, природно-очаговая болезнь, распространяющаяся промежуточными хозяевами, мышами-крысами и дикими-домашними свиньями. Основным хозяином этой болезни являются дикие свиньи и человек. Вопросы вакцинирования животных очевидны и не подлежат сомнению. Люди должны заботиться о своем здоровье, обеспечивая и обезвреживая продукты животноводства. Хорошей профилактикой многих инфекционных и паразитарных болезней в этом случае являются вакцинации животных, обеспечивающие специфический иммунитет на короткое или непродолжительное время. Нет необходимости думать, что вакцинации каким то образом могут подорвать здоровье животных. Жизнь животных коротка. Вес животных почти всегда больше веса маленьких детей, которые получаю почти те же дозы вакцин, что и животные. Вакцинирование в ветеринарии необходимо и является одним из условий здоровья людей. Безусловно и неоспоримо, что необходимо вакцинировать и домашних любимцев, живущих бок о бок с нами в одной квартире или на одной территории. Угроза передачи многих инфекционных и паразитарных болезней в этом случае от животных к человеку велика, несмотря на все предпринимаемые меры гигиены и предосторожности. Нельзя подвергать себя и своих близких риску заболевания и распространению болезней общих для животных и человека. Неоспоримым является и то, что те группы работников, имеющие постоянный контакт с патогенными началами, сами могут стать переносчиками опасных инфекционных болезней здоровью окружающих. Предотвращение эпидемий в животноводстве и птицеводстве, предотвращение человеческих эпидемий, передача болезней от животного к животному, от животного к человеку подводит специалистов к принятию экстренных мер и методов борьбы с новыми быстро распространяющимися болезнями. Разработка, производство и применение вакцин в ветеринарии просто необходима. В этих случаях, как животных, так и людей имеющих непосредственный контакт с животными, необходимо во внеплановом порядке вакцинировать. Необходимо вакцинировать население неблагополучных по инфекционным заболеваниям районов перед лицом угрозы быстро распространяющихся человеческих болезней. И выбор здесь невелик. Такая вакцинация предусматривает предупреждение и предотвращение распространения инфекции на большие территории. Безусловно необходимо вакцинировать детей в домах ребенка, школах-интернатах, людей в местах заключения, других учреждениях, где есть тесный контакт и высока вероятность передачи инфекции воздушно-капельным и бытовым путями, при использовании общих инструментов и предметов пользования. Этим самым и отличаются профилактические вакцинации животных и работников группы риска от вакцинаций якобы защищающих наших грудных и малолетних детей. Всего 100 лет назад педиатры были "элитой" медицинской системы. В настоящее время широко образованный педиатр стал встречаться всё реже и реже. Когда-то Бернард Шоу сказал: "Доктор - такой же отличный консультант в вопросах прививок, как мясник - в вопросах вегетарианства". Иллюзия, что все инфекционные болезни будут побеждены, стоит лишь провакцинировать "всех подряд", показывает отсталость в подходе к решению основных проблем: одна проблема - одно решение. Не будет большим преувеличением сказать, что вообще врачи гораздо менее склонны к формированию собственных суждений, чем представители иных специальностей. Почему так - это тема для отдельного разговора. 97% педиатров возможно ничего не знают ни о токсических компонентах вакцин, ни о диагностике иммунитета, ни о серьезных поствакцинальных осложнениях, их частоте, и о существующих альтернативах. Вакцины существуют чуть более двух веков, но всё это время не утихают споры об эффективности или безвредности их применения. При этом во многих развитых странах сложилась преступная традиция вакцинировать "всех подряд, из-за удобства с организационной точки зрения". Это приводит к плачевным результатам, когда 80-85% детей, заболевших например, дифтерией, оказываются "правильно и своевременно" вакцинированными. Туберкулез тоже почему-то не хочет "ликвидироваться", несмотря на помощь, оказываемую в роддомах новорожденным младенцам посредством BCG-вакцины в первые дни жизни. Количество химических агентов входящих в состав вакцин, представляющих токсическую опасность, настолько велико, что не поддается анализу. Теоретически, отравление организма возможно любым физиологически или биологически активным соединением. Как показывает статистика, их число составляет около трехсот наименований. Довольно часто, регистрируются заражения и отравления бакте­риальными агентами присутствующими в вакцинах. Об этом вы можете ознакомиться в разделе "О прямой опастности химических веществ входящих в состав вакцин". Особенно высок риск и токсическая опасность применения биопрепаратов грудным детям. Статистически встре­чается в среднем 8% всех поствакцинальных отравлений. "Уничтожить и не ждать ответного удара... не подумав, а не займут ли освободившееся место под солнцем другие, куда более агрессивные микробы и вирусы?" - предостерегал автор дифтерийного анатоксина Гастон Рамон. Как показывает практика, многие врачи совершенно не знакомы со статистикой, с диагностическими и иммунологическими аспектами инфекционных болезней. Особую тревогу вызывают факты, свидетельствующие о проводимых на наших детях "широкомасштабных испытаниях безопасности" новых вакцин под благовидным предлогом "календарных вакцинаций". Ликвидация болезней - работа неблагодарная, практически невыполнимая по своей непредсказуемости, да и небезопасная. Связь вакцинологии с иммунной системой - это процесс распространения выводов, суждений, заключений, полученных для определенных объектов в определенных условиях, на иные объекты и в иных условиях. При оценке риска действия токсикантов, как правило, касающихся переноса данных, полученных на одном виде животных, на другие виды животных и человека, установлены определенные требования в условиях моделирования непрерывного воздействия. Улучшение способов диагностики предвакцинального периода предполагает исчерпывающее знание педиатрами токсикокинетических и токсикодинамических характеристик токсикантов входящих в состав вакцин. В этой книге такая информация доступна всем, как с точки зрения специалистов, так и обычных любителей "острых ощущений". Обычно, оценка токсичности веществ осуществляется в опытах на лабораторных животных. Вместе с тем в медицине и в ветеринарии уже давно и хорошо известны видовые различия чувствительности к определённым токсикантам. Таблица 1. Сравнительная токсичность некоторых веществ для человека и экспериментальных животных (ЛД 50; мг/кг - per os)

Вещество Человек Крыса Мышь Кролик Собака
Анилин     - - -
Амитал     -   -
Борная кислота       - -
Кофеин 1 92     - -
Карбофуран       - -
Линдан     -    
Аминопирин -        
(А. Rowan, 1983) Считается, что человек, из большого числа животных - наиболее восприимчивый вид. В частности из этого представления исходят при изучении канцерогенной активности ксенобиотиков. Однако это не так. Изучая и используя на практике явление избирательной токсичности, удалось создать огромное количество препаратов, малотоксичных для людей и высокотоксичных для представителей других видов. Поэтому в тех случаях, когда при определении риска здоровью новорожденных основываются на результатах опытов с крысами, кроликами, телятами и поросятами, часто возникают существенные переоценки или недооценки степени риска для человека. Для достоверного выявления "слабых" токсических эффектов вещества, действующего в малых дозах, порой необходимо проведение эксперимента на тысячах лабораторных животных. Ни физически, ни экономически это не осуществимо. Поэтому, обычно, исследования проводятся с использованием высоких доз токсикантов, что позволяет получить статистически значимые результаты в диагностике. Существует несколько математических моделей перевода данных, полученных в опытах с высокими дозами веществ на малые, но при этом отсутствует достоверная информация, какая из этих моделей адекватно характеризует токсические процессы, или даже на сколько реальны они все в применении на иные биологические обьекты. Все эти модели расчётов и перевода данных, хорошо и практически одинаково, описывают зависимость "доза-эффект" при относительно высоких уровнях воздействия. При слабых воздействиях, выявлены существенные различия между ними. Причем, чем к более малым дозам подводятся результаты, тем больше вероятность расхождений и погрешностей. В рамках существующих диагностических и токсикологических расчётов отсутствует возможность экспериментальной верификации этих моделей.

Основы иммунизации и вакцинации.
200 лет тому назад, когда свирепствовала натуральная человеческая оспа, Jenner привил маленькому мальчику коровью оспу. Он испытал радость и облегчение, увидев, что ребёнок оказался защищённым от последующего заражения натуральной человеческой оспой. Возможно, в те времена такие эксперименты на детях и на людях не влекли за собой уголовной ответственность и преследования. Главное то, что ребёнок был привит свежим содержимым из оспенного пузыря взятого у больной коровы. Такое вакцинирование, не содержащее токсических консервантов вакцины и свежий пассируемый вирус не передаваемый от одного биологического вида к другому, на самом деле явился пассивной иммунизацией, а в последующем, предметом дальнейшего исследования и открытия нового направления в науке называемого иммунологией. Инъецируя безвредную и безопасную форму болезнетворного вируса Jenneru удалось искусственно создать специфическую иммунологическую память и заложить основы современной вакцинации. Дальнейшие исследования в этой области заключались в получении безвредных форм инфекционных организмов или их токсинов, которые в значительной степени всё ещё сохраняют антигенные свойства, чтобы обеспечить возникновение протективного иммунитета. Для этого используют как убитые, так и живые ослабленные формы микроорганизмов, очищенные микробные компоненты или же модифицированные антигены.
Иммунизация - первичный контакт иммунной системы организма с антигеном, при условии, что она должна быть безвредной. Ведь проблема приготовления вакцин в целом сводится к выделению протективных антигенов. Основополагающим моментом здесь является то, что вероятность осложнений при вакцинации должна быть сведена к нулю, как и ожидаемый риск заболевания с его собст­венными осложнениями. Особенности иммунного ответа на внедрение антигена определяет главная система гистосовместимости (Major Histo-compatability Complex). У человека МНС локализована в 6-ой хромосоме и обозначается как HLA. Такое название ей дано в связи с тем, что HLA -- это антигены, которые достаточно полно представлены на лейкоцитах (Human Leucocyte Antigens -- HLA). HLA определяет:
1) высоту иммунного ответа;
2) уровень подавления антителообразования;
3) специфику иммунной реакции. Образование антител в ответ на первичное введение вакцины характеризуется 3 периодами:

- латентный период или "лаг-фаза" - это интервал времени между введением антигена (вакцины) в организм и появлением антител в крови. Его длительность составляет от нескольких суток до 2-х недель в зависимости от вида, дозы, способа введения антигена, особенностей иммунной системы ребенка;
- период быстрого нарастания антител в крови. Продолжительность этого периода может составлять от 4 дней до 4 недель; примерно 3 недели в ответ на столбнячный и дифтерийный анатоксины, 2 недели - на коклюшную вакцину. Быстро нарастают антитела на введение корьевой, паротитной вакцин, что позволяет использовать ак­тивную иммунизацию для экстренной профилактики кори и эпидемического паротита при ее проведении в первые 2--3 дня от контакта. В случае дифтерии и коклюша этот метод профилактики неэффективен, так как нарастание титров антител до протективного (защитного) уровня при введении дифтерий­ного анатоксина и коклюшной вакцины происходит в течение более продолжительного времени, чем инкубационный период;
- период снижения антител в крови наступает после достижения их макси­мального уровня, причем количество антител снижается вначале быстро, а затем медленно в течение не­скольких месяцев и лет.

Существенным компонентом первичного иммунного ответа являются иммуноглобулины класса IgМ, тогда как при вторичном иммунном ответе иммуноглобулины представлены воснов­ном IgG. Повторные дозы антигена приводят к более быстрому и более интенсивному иммунному ответу, максимальный уровень антител выра­батывается быстрее, а период персистенции антител дольше. Происходит это за счет быстрого вступления в реак­цию В- и Т-клеток памяти. Оптимальный промежуток времени между первым и вторым введением вакцины 1--2 месяца. Сокращение сроков вакци­нации может способствовать элиминации антигенов вакцины предшествующими антителами. Удлинение интервала между введениями вакцины не вызывает снижения эффективности иммунизации, однако ведет к увеличению времени иммунодефицитной паузы и возможности заболевания между вакцинациями другими болезнями. На введение вакцины детский организм может ответить развитием аллергических реакций. Аллергенным действием об­ладают коклюшный компонент АКДС вакцины, компоненты питательных сред и клеточных культур, на которых выращи­ваются вакцинные штаммы вирусов и антибиотики, которые ис­пользуются для приготовления вакцин. Особенности механизмов токсического действия вакцин в период иммунизации могут иметь решающее значение для выбора методики оценки риска как действия антгенов, так и оценки выработки антител. В токсикологии, принято выделять несколько групп канцерогенов входящих в состав вакцин и применяющихся в иммунизации. Это: взаимодействующие с ДНК и оказывающие генотоксическое действие, и не взаимодействующие с ДНК, оказывающие эпигенетическое действие. Современных теорий, описывающих химический канцерогенез в период профилактических иммунизаций до сегодняшнего деня не существовало. Выделяют три этапа развития антииммунизации, а это: инициацию, промоцию, экспрессию. В период инициации и промоции, известными и неизвестными свойствами могут быть охарактеризованы соответственно генотоксиканты и эпигенотоксиканты. Вещества, относящиеся к первой группе действуют по беспороговому принципу, в то время, как эпигенотоксиканты могут быть охарактеризованы соответствующим пороговым значением доз. Методика оценки риска иммунизации для таких веществ, принципиально различна. До сих пор ещё не для всех канцерогенов входящих в состав вакцин установлен механизм их токсического действия. Существующая методика оценки риска иммунизации в период действия канцерогенов не учитывает, как различий механизмов их действия в составе одной вакцины, так и механизмов действия в составах комбинированных вакцин.

Иммунитет.
ИММУНИТЕТ (лат. immunitas - свободный от чего-либо). - неприкосновенность, состояние защиты, устойчивости, невосприимчивости, непоражаемости, неприступности, резистентности, толерантности. Основной функцией системы защиты является выработка способов защиты организма хозяина от живых тел и веществ, несущих на себе признаки чужеродной информации. Сущность видового (наследственного) иммунитета обусловлена биологическими особенностями данного вида животных и человека. Он не специфичен, устойчив,передаётся по наследству. За исключением до конца не понятых факторов, делающих один вид восприимчивым к определенным инфекциям, а другой вид не восприимчивым к этим инфекциям. Мы живём в потенциально враждебном мире, наполненном огромным количеством инфекционных агентов, которые имеют различные размеры, форму, строение и собственную разрушительную способность. Они были бы рады использовать нас, как среду для своего размножения и развития, если бы мы в свою очередь не выработали целый ряд защитных механизмов, порой превосходящих по эффективности и изобретательности. Это действие защитных механизмов, обеспечивающих возникновение иммунитета к инфекциям. За исключением не до конца понятных конституциональных факторов, делающих один вид восприимчивым, а другой не восприимчивым к определенным инфекциям, существует ряд специфических антимикробных систем, которые являются "врожденными" и их активность не зависит от контакта с чужеродным антигеном. Строение иммуной системы. Иммуная система состоит из лимфоидных органов, функционирующих между собой очень согласованно за счёт входящих в их состав мобильных клеток, мигрирующих по всему организму. Иммунная система состоит из центральных и переферических органов. К центральным относятся: тимус (вилочковая железа) и бурса Фабрициуса (лимфоидное образование кишечника птиц), - которые обуславливают клеточный и гуморальный иммунитет. Переферические органы включают в себя: кровь и костный мозг, миндалины, селезёнку, лимфатические узлы, аппендикулярный отросток, лимфоидные элементы, расположенные во внутренних органах. Тимус - лимфоэпителиальный орган. Окончательно формируется к пятому году жизни. Достигает своего максимального развития к тридцати годам и далее эволюционирует до старости. Тимус является центром иммунного надзора. В нём происходит образование Т-лимфоцитов, факторов, управляющих Т-клетками на расстоянии. Функция виличковой железы представляется более широкой, так как этот орган тонко реагирует на различные физиологические и патологические состояния. Например, в период беременности тимус уменьшается в 2-3 раза. Имеет непосредственное отношение к образованию "фактора роста", участвует в регуляции и дифференцировке соматических клеток у плода. Важной особенностью тимуса является высокий уровень митзов, независящий от антигенного раздражения. Бурса Фабрициуса - фолликуло-эпителиальный орган. Обнаружена у птиц. Регулирует гуморальные иммунные реакции. У человека функцию бурсы выполняет в первую очередь червеобразный отросток, костный мозг, лимфотические образования кишечника. Лимфатические узлы - распологаются по ходу лимфатических сосудов. Содержат тимусзависимые и тимус независимые центры. Являются местом образования лимфоцитов и синтеза антител. В лимфотических узлах происходит задержание антигенов, опухолевых и инородных клеток, разрушение отработавших свой срок эритроцитов. Селезёнка - самый крупный лимфоидный орган, главный источник циркулирующих лимфоцитов. Как часть ретикуло-эндотелиальной системы в селезёнке разрушается и удаляется из кровотока утратившие функциональную активность, отжившие и поврежденные эритроциты, лейкоциты, тромбоциты, а также гемоглобин превращается в билирубин и гемосидерин. Поскольку гемоглобин содержит железо, селезенка - один из самых богатых резервуаров железа в организме. Кроме того, селезёнка действует как фильтр для бактерий, простейших и инородных частиц, продуцирует антитела, осуществляет контроль за цитологическим составом крови. Люди, лишенные селезенки, особенно маленькие дети, очень чувствительны ко многим бактериальным инфекциям. Наконец, как орган, участвующий в кровообращении, она служит резервуаром эритроцитов, которые в критической ситуации вновь выходят в кровоток. Кровь - условно относится к "периферическим лимфоидным органам". В крови циркулируют различные виды лимфоцитов, моноциты, нейрофилы и другие клетки внутренней среды. Общее количество циркулирующих лимфоцитов составляет 10 в 10 степени. Нёбные миндалены - представляют собой парный лимфоидный орган, расположенный в преддверии глотки, на границе дыхательного и пищеварительного трактов. Выполняет особую роль информационного центра о поступающих во внутреннюю среду организма чужеродных агентах содержащихся в пище, воде и воздухе. Межузелковая ткань нёбных миндалин является тимусзависимой информационной зоной, а крипты с лимфоидными узелками служат для размножения В-лимфоцитов. В миндалинах синтезируются sIgA, IgM, IsG, и интерфероны. Всё это обусловливает неспецифическую антиинфекционную резистентность организма с самого рождения. Аппендикулярный отросток - гистоморфологически состоит из купола с короной, фолликулов, расположенных под куполом, тимусзависимой зоны, и связанной с ней слизистой оболочки в форме грибовидных выступов. Купол аппендикса выполняет функцию центрального лимфоидного органа, а в фолликулах размножаются В-клетки, сенсибилизированные кишечными бактериями.

Барьеры противоинфекционной защиты.
Простейший путь избежать инфицирования - это предотвратить проникновение возбудителя в организм. Основной линией обороны служат кожные покровы, которые, будучи не поврежденными, остаются непроницаемы для большинства инфекционных агентов. Местный иммунитет обеспечивает защиту покровов тела. Он является частью программы общего иммунитета. Большинство микробов, бактерий, грибов, не способны долго существовать на поверхности кожи из-за прямого гибительного действия молочной кислоты и жирных кислот, содержащихся в поте и секрете сальных желёз, обуславливающих низкое значение рН поверхности кожи. Слизь, выделяемая стенками внутренних органов, действует как защитный барьер, препятствующий прикреплению бактерий к эпителиальным клеткам. Микробы и другие чужеродные частицы, захваченные слизью, удаляются механическим путём - за счет движения ресничек эпителия, вымывающим действием слёз, слюны и мочи, а так же кашлем и чихаинием. Во многих секретах, выделяемых организмом, содержатся бактерицидные компоненты такие как: соляная кислота в желудочном соке, лактопероксидаза в молоке, лизоцим в слезах, слюне и носовых выделениях, спермин и цинк в сперме и тд. Совершенно иной характер имеет механизм микробного антагонизма, связанный с нормальной бактериальной флорой человеческого организма. Эти бактерии угнетают рост многих потенциально патогенных микроорганизмов и грибов вследствие конкуренции за необходимые питательные вещества. Например, патогенная флора влагалища угнетается молочной кислотой, которая вырабатывается одним из видов бактерий-комменсалов. Эти бактерии метаболизируют гликоген, секретируемый клетками влагалищного эпителия. Если защитные комменсалы повреждены антибиотиками, то чувствительность к возможному инфицированию молочницей возрастает. Если же микробы всё-таки проникли в организм, то в действие последующей защиты вступают два фактора защиты: разрушение химическими бактерицидными ферментами и фагоцитоз (поедание и переваривание клетками).

Клетки уничтожающие микроорганизмы.
Как известно, первое научное определение иммунитета было дано лауреатом Нобелевской премии, биологом проф. И.Мечниковым в 1903 г. - как общей системе явлений, благодаря которым организм способен выигрывать сражение при нападении "болезнетворных микроорганизмов". Захват и переваривание микроорганизмов осуществляется двумя типами клеток, которые И.Мечников определил как микро- и макрофаги. Микрофаги имеют общего гемопоэтического стволового предшественника с другими форменными элементами крови и доминируют среди остальных лейкоцитов, они полиморфоядерные нейтрофилы - клетки с сегментированным ядром и набором гранул, не делящиеся и короткоживущие. У нейтрофилов известны три типа гранул: первичные азурофильные гранулы, содержащие миелопероксидазу, небольшое количество лизоцима и набор катионовых белков; вторичные "специфические" гранулы содержат лактоферин, лизоцим и белок, связывающий витамин В12; третичные гранулы, похожие на обычные лизосомы содержат кислые гидролазы. Обширные запасы гликогена, который может быть использован в гликолизе, позволяют этим клеткам существовать в анаэробных условиях. Макрофаги образуются из промоноцитов костного мозга, которые после дифференцировки в моноциты крови задерживаются в тканях в виде зрелых макрофагов, где и формируют систему мононуклеарных фагоцитов. Они присутствуют повсюду - в соединительных тканях и вокруг базальных мембран мелких кровеносных сосудов. Особенно высоко их содержание в лёгких (альвеолярные макрофаги) и печени (клетки Купфера). Кроме того, макрофаги выстилают синусоиды селезенки и медуллярные синусы лимфатических узлов, где их основная функция - отфильтровывание чужеродных материалов. Другим примером макрофагов являются мезангиальные клетки почечных клубочков, клетки микроглии мозга и остеокласты костной ткани. В отличие от от полиморфноядерных лейкоцитов макрофаги - долгоживущие клетки с хорошо развитыми митохондриями и шероховатым эндоплазматическим ретикулумом. И если полиморфноядерные нейтрофилы обеспечивают основную защиту от гноеродных бактерий, то функция макрофагов в основном сводится к борьбе с теми бактериями, вирусами, простейшими и грибами, которые способны существовать внутри клеток организма хозяина.

Необходимость существования специфических иммунных механизмов.
Патогенные микроорганизмы обладают огромными возможностями менять свою стратегию паразитирования благодаря мутациям, что позволяет им ускользать от воздействия врожденных механизмов защиты организма хозяина. Например, большинство "процветающих" паразитов запускает альтернативный путь активации комплемента. Эозинофилы прикрепляясь к их поверхности по неизвестным причинам не переходят в наступление. Подобные свойства характерны для многих бактерий, а некоторые из них способны настолько видоизменяться, что им удаётся полностью избежать воздействия внутренних механизмов защиты. Невероятно сложная задача для организма, иметь для достижения внутренних механизмов защиты огромное число специфических средств.

Приобретённая память.
Когда наш организм отвечает на данный инфекционный агент образованием антител, само сабою разумеется, что патогенные микроорганизмы существуют в окружающей нас среде и мы можем встетиться с ними снова и снова. Имеет место тот факт, что иммунные механизмы, приводимые в состояние готовности при первичном контакте с антигеном, запоминают его. Мы редко дважды заболеваем корью, свинкой, ветрянкой, коклюшем, так как первичный контакт с возбудителем ясно запоминается в виде клеточной памяти. Таким образом, организм быстро реагирует при повторной встречи с антигеном. Возникает приобретенный иммунитет. Наш организм обладает способностью синтезировать сотни тысяч, а возможно, даже миллионы различных молекул антител. Очевидно, что в организме не может быть такого огромного разнообразия лимфоцитов, продуцирующих специфические антитела. Между тем лимфоциты, сенсибилизированные антигеном, последовательно проходят несколько стадий пролиферации и формируют большой клон плазматических клеток. Эти клетки будут синтезировать антитела только той специфичности, на которую был запрограммирован лифоцит-предшественник. Пролиферирующему клону необходимо время для образования достаточного количества клеток. Вот почему проходит несколько дней после первичного контакта с антигеном, прежде чем в сыворотке обнаруживаются антитела. Эти антитела образовываются в результате антигенного воздействия, именно они указывают на приобретённый иммунный ответ. Благодаря этому запоминающему механизму антитела могут накапливаться в достаточно высоких концентрациях и эффективно бороться с инфекциями.

Специфичность приобретённого иммунитета.
Возникновение иммунологической памяти (приобретенного иммунитета) к одному виду микроорганизмов, не обеспечивает защиту организма от тысяч других. Например, переболев корью, организм приобретает иммунитет и мы больше этой болезнью не заболеем. Однако, всегда остаемся восприимчивы к другим патогенным агентам. Следовательно, приобретённый иммунитет специфичен, и иммунная система способна точно различать новые и уже встречающиеся антигены. В основе этой специфичности лежит способность распознающих участков молекул антител различать антигены. Антитела, реагирующие с анатоксином, не связываются с геммаглютинином, например вируса гриппа, и соответственно, антитела вырабатываемые к вирусу гриппа не взаимодействуют с анатоксином. Эта способность узнавать единственный антиген и выделять его среди других имеет фундаментальное биологическое значение для распознавания своего и чужого. Неспособность отличить "своего" от "не своего" может привести к синтезу антител(аутоантител), взаимодействующих с компонентами собственного организма, что имеет серьезные последствия. Исходя из чисто теоретических предпосылок Burnet и Fenner предположили, что человеческий организм должен был создать какой-то механизм, различающий "своё" и "не своё". Они доказали, что те циркулирующие компоненты нашего организма, которые попадают в разливающуюся лимфоидную систему в пренатальном периоде, так или иначе распознаются как "свои". Затем по отношению к ним возникает постоянная неотвечаемость - это означает, что после завершения созревания иммунной системы, неспособность реагировать на "свои" компоненты становится нормой. Естественная резистентность не относится к истинно иммунной реакции. Она является связующим звеном со специфическими иммунными механизмами, защищая организм от химических, физических, биологических (инфекционных и неинфекционных) патогенных агентов. Обеспечивает передачу сигналов на В-клетки и последующего запуска иммунных реакций. Приобретённый иммунитет является не наследственным, специфическим и в ряде случаев не стабильным. Формируется на протяжении всей жизни индивида. Известны следующие формы приобретённого иммунитета: -- естественный активный иммунитет образуется после перенесённой болезни, поролжается месяцы, годы, до конца жизни; -- естественный пассивный иммунитет возникает вслед за получением материнских антител через плаценту, с молозивом. Исчезает после окончания периода лактации; -- искуственный пассивный иммунитет создается с помощью введения готовых антител. Его продолжительность определяется периодом полураспада введённых гамма глобулинов; Первичный иммунитет возникает при первом контакте Т-В-клеток с антигеном и сопровождается пролиферацией иммунокомпетентных лифоцитов. Вызывает образование IgМ. Формирует иммунную память. Ответная реакция нарастает в течение 5-10 днейпосле контакта с антигеном. Вторичный иммунитет формируется при повторном контакте с антигеном. Характеризуется идентифицированием антигена клетками иммунной памяти. Ответная реакция иммунной системы на антигенное "раздражение" происходит в короткие сроки, обычно это от 1 - 3 дней. Повышение иммунитета характеризается выработкой IgG. Хотя эффективность механизмов врожденного иммунитета не повышается при повторном контакте с антигеном (в отличие от механизмов приобретенного иммунитета), его значение очень велико, поскольку он теснейшим образом связан с системой приобретенного иммунитета. Естественный иммунитет - сложный феномен, включающий в работу многие органы и системы, он не может быть заменен искусственной стимуляцией образования антител. Существует широкий спектр механизмов врождённого иммунитета, эффективность которых при повторном контакте с антигеном не повышается. Микроорганизмам трудно проникнуть в человеческий организм благодаря защитному действию кожи, слизи, вымывающему действию бактерицидных жидкостей, высокой кислотности желудочного сока и тд. Если микроорганизмы всё-таки преодолели эти барьеры, они разрушаются растворяющими факторами лизоцима или путем фагоцитоза с последующим внутриклеточным перевариванием. Микроорганизмы связываются с поверхностями с полиморфоядерными нейрофилов и макрофагов, активируют процесс поглощения и оказываются внутри клеток, где сливаются с цитоплазматическими гранулами. Затем в действие вступают многочисленные кислородозависимые и кислороднезависимые бактерицидные механизмы. Система комплемента состоит из большого числа компонентов. Её активация представляет собой ферментативную каскадную реакцию и приводит к поглощению микроорганизмов фагоцитами. Например, многие вирусные инфекции поддаются лечению с помощью интерферонов, которые блокируют репликацию вирусов. Большие зернистые лимфоциты с активностью нормальных киллеров уничтожают инфицированные вирусом клетки. Многим паразитам не удаётся обосноваться в организме потенциального хозяина благодаря внеклеточному уничтожению, которое осуществляется эозинофилами. Антитела образуются плазматическими клетками, предшественниками которых служат В-лимфоциты, каждый из которых запрограммирован на синтез антител определённой специфичности. Эти антитела расположены на поверхности клеток и выполняют функции рецепторов антигена. Связывание антигена со специфическим рецептором активирует клетку и вызывает пролиферацию определённого клона, а в конечном итоге формирование антителообразующих клеток и клеток памяти. Увеличение числа клеток памяти обеспечивает быстрый и эффективный вторичный ответ по сравнению с первичным. Приобретённый иммунитет. Приобретённый иммунитет развивается, как правило, в результате первичного контакта иммунной системы с инфекционным агентом. Начинается пролиферация соответствующих антиген-специфических клеток, эффекторные механизмы устраняют антиген, вследствие этого интенсианость ответа данной специфичности падает при сохранении возможности организма реагировать на другие инфекции. Для ограничения образования антител должен существовать механизм обратной связи. Иначе после антигенной стимуляции наш организм переполнился бы клонами антителообразующих клеток и их продуктима. Главным регулятором образования антител может быть сам антиген. В его присутствии иммунный ответ повышается, а при уменьшении концентрации - снижается. Существование такого регулирующего механизма антиген-антитело многократно подтверждено научными исследованиями. Способность образования антител определяется кодом в определенной хромосоме. Экспериментально доказано, что способность продуцировать идиотипичные антитела наследуется генетически закодированными части иммуноглобулинов, то есть ген кодирующий идиотип антитела находится на той же хромосоме. Эффективность механизмов генерации разнообразия антител на основе имеющихся антигенов настолько велика, что предположения развития иммунодефицитных состояний организма врядли может быть обусловлено дефектами набора генов в иммуноглобулинах. <; Иммунитет к инфекциям представляет собой постоянное поле сражения между защитными механизмами хозяина и постоянно мутирующими микробами, стратегия которых состоит в том, как противостоять действию механизмов защиты хозяина. Бактерии стараются избегать фагоцитоза, окружая себя капсулами, секретируя экзотоксины, убивающие фагоцитов. Они стараются заселять относительно недоступные для иммунной системы участки организма. Секреторная иммунная система защищает контактирующие с внешней средой слизистые оболочки и покровы тела. Например, внутриклеточные микроорганизмы, такие как, микобактерии туберкулёза и проказы, растут и размножаются внутри макрофагов. Они защищаются от механизмов уничтожения, подавляя слояние фагосом с лизосомами, образуя наружную оболочку или выходя из фагосом в цитоплазму. Вирусы уклоняются от действия иммунной системы, изменяя антигенные свойства поверхностной оболочки. Точечные мутации вызывают существенные изменения, приводящие к массовым эпидемиям, в результате обмена генетическим материалом с другими вирусами, имеющими других хозяев. При анализе ответной реакции организма на инфекцию, выясняются подробные детали того, как специфический иммунный ответ усиливает эффективность врождённых неспецифических механизмов иммунитета. Было бы много проще, если бы педиатры, имеющие отношение к иммунопрофилактике, досконально знали основы иммунологии и вакцинации... ещё со студенческой скамьи. Они учили иммунологию, которая давно отошла от первоначальных представлений в прошлое, когда термин "иммунитет" использовали исключительно для обозначения свойств и явлений, позволяющих противостоять нападению "болезнетворных микробов". Известный учёный, онковирусолог Л.Зильбер дополнил и развил учение И.Мечникова тем, что определил состояние невосприимчивости как совокупность всех наследственно полученных и индивидуально приобретённых свойств, препятствующих проникновению и размножению микробов. Непосредственно, действию выделяемых ими токсичных продуктов жизнедеятельности. Совокупность внутренних защитных процессов, считал Л.Зильбер, направлена на восстановление постоянства внутренней среды организма человека в случаях нарушения её функционирования инфекционными или другими антигенами. Следует отметить, что раньше
работ Л.Зильбера, были опубликованы заключения академика Н.Гамалея, который относил иммунологические реакции к явлениям гомеостаза, а именно к регуляторам динамического постоянства внутренней среды организма человека. Именно академик Гамалея обращал, особое внимание на то, что среди нас находится 15% таких лиц, у которых никогда не образуются специфические защитные антитела даже после защитной иммунизации, причём, у каждого человека это происходит индивидуально с разными патогенными антигенами. Например, для дифтерии необходима ранняя диагностика и лечение, ни один случай нельзя запускать. Надо быть "талантливым" врачом, чтобы при отсутствии дефицита антибиотиков довести бактериальное заболевание до тяжелых осложнений. Особое место в "новой" иммунологии как очередном этапе её развития занимает клонально-селекционная теория австралийского учёного М.Бернета. В основу этой теории положены ранее известные, давние представления П. Эрлиха о предсуществовании в организме человека антител разной специфичности. Давно доказано, что на протяжении всей жизни, каждый индивидуум испытывается "на прочность" большим количеством патогенных микроорганизмов, в результате чего вырабатываются специфические антитела - называемыми ИММУНОГЛОБУЛИНАМИ. Каждое специфическое антитело синтезируется отдельным клоном иммунокомпетентных клеток. Научные исследования указывают на то, что вакцины привязывают иммунные клетки к специфическим антигенам, входящих в их состав. При этом они делают эти клетки неспособными реагировать на иные инфекции. Именно М.Бернетом в значительной степени определено "лицо" современной иммунологии как возможности дифференцировать всё "СВОЁ" от всего "ЧУЖОГО". Он обратил внимание на клетки лимфоцитов, как на основной компонент специфического иммунного реагирования, дав ему название "иммуноцит". Наконец, М.Бернет указал на особую роль ТИМУСА в формировании иммунного ответа. В формуле клонально-селекционной теории нет ничего сложного: один клон лимфоцитов способен реагировать только на одну конкретную антигенную специфическую детерминанту. Принцип такой организации иммунной системы, доказанный М.Бернетом в 50-е годы XX столетия, полностью подтвердился. Считается, что некоторым недостатком теории является представление о том, что многообразие антител возникает только за счёт мутационного процесса. Но в то время, когда М. Бернет разрабатывал свою теорию, ничего не было известно о генах иммуноглобулинов и рекомбинации в процессе созревания. Хотя антитела - защитники организма были обнаружены, как говорилось выше, ещё П. Эрлихом. "Объединила все теоретические построения убеждённость в том, что антиген является лишь фактором селекции, а не участником формирования специфического ответа". Для того чтобы "спровоцировать" иммунный ответ, антиген должен обладать свойствами чужеродности, иметь достаточный молекулярный вес, отвечать определённым особенностям структуры. Таким образом, приобретенный иммунный ответ целиком базируется на функционировании лимфоцитов. В первой фазе иммунного ответа происходит их активация, во второй - клональная пролиферация и в заключительной - превращение значительной части лимфоцитов в эффекторные клетки, а оставшейся части - в клетки памяти, обеспечивающие вторичный ответ. Наиболее характерными признаками иммунной системы, отличающими её от других систем организма человека, являются следующие:

-- способность дифференцировать всё "своё" от всего "чужого"; -- создание генетического архива памяти о первичном контакте с чужеродным антигенным материалом; -- клональная организация иммунокомпетентных клеток, проявляющаяся в способности отдельного клеточного клона реагировать только на одну из множества антигенных детерминант.

Применяя сказанное к системе "вакцинировать всех подряд" по одной и той же схеме, следует обратить внимание на следующее: во-первых, на постоянную нагрузку иммунной системы путём искусственного "спасения" от того, чего на самом деле нет и когда будет неизвестно! Вмешательства в иммунитет ребёнка систематически дезорганизует данные природой защитные силы организма, отвлекая на сверхработу против того, с чем ребёнок в наше время вряд ли встретится, пропуская более важные и опасные приоритеты в борьбе с чужеродным и агрессивным окружением среды обитания; во-вторых, "создание генетического архива памяти о первичном контакте" может исходить от разного проявления такого контакта с возбудителями инфекционных болезней. Например, от перенесённого ребёнком в скрытой форме, без проявления типичной клинической картины, без соответствующего лечения: полиомиелита, дифтерии, туберкулёза, коклюша и даже паротита. При постановке педиатром диагноза на бронхит или ОРЗ, часто не выявленный и вовремя не идентифицированный возбудитель может нанести непоправимый вред молодому организму. в-третьих, "клональная







Дата добавления: 2015-10-12; просмотров: 440. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Признаки классификации безопасности Можно выделить следующие признаки классификации безопасности. 1. По признаку масштабности принято различать следующие относительно самостоятельные геополитические уровни и виды безопасности. 1.1. Международная безопасность (глобальная и...

Прием и регистрация больных Пути госпитализации больных в стационар могут быть различны. В цен­тральное приемное отделение больные могут быть доставлены: 1) машиной скорой медицинской помощи в случае возникновения остро­го или обострения хронического заболевания...

ПУНКЦИЯ И КАТЕТЕРИЗАЦИЯ ПОДКЛЮЧИЧНОЙ ВЕНЫ   Пункцию и катетеризацию подключичной вены обычно производит хирург или анестезиолог, иногда — специально обученный терапевт...

Принципы резекции желудка по типу Бильрот 1, Бильрот 2; операция Гофмейстера-Финстерера. Гастрэктомия Резекция желудка – удаление части желудка: а) дистальная – удаляют 2/3 желудка б) проксимальная – удаляют 95% желудка. Показания...

Ваготомия. Дренирующие операции Ваготомия – денервация зон желудка, секретирующих соляную кислоту, путем пересечения блуждающих нервов или их ветвей...

Билиодигестивные анастомозы Показания для наложения билиодигестивных анастомозов: 1. нарушения проходимости терминального отдела холедоха при доброкачественной патологии (стенозы и стриктуры холедоха) 2. опухоли большого дуоденального сосочка...

Studopedia.info - Студопедия - 2014-2024 год . (0.011 сек.) русская версия | украинская версия