Студопедия — Патогенез множественной миеломы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Патогенез множественной миеломы






В настоящее время большинство ведущих исследователей считают, что опухолевая трансформация В-лимфоцитов при множественной миеломе происходит в терминальном центре периферических лимфоидных органов после соматических гипермутаций реаранжированных генов Ig и изотопического переключения синтеза антител. В дальнейшем плазмобласты и клетки памяти, претерпевшие опухолевую трансформацию, так же как и нормальные аналогичные клетки, возвращаются в костный мозг, где при взаимодействии с элементами костномозгового окружения проходят окончательный этап созревания до плазматических клеток. В костном мозге эти плазматические клетки формируют опухолевый клон, способный к дальнейшей пролиферации и распространению.

Опухолевые клетки при множественной миеломе проявляют важные свойства нормальных долгоживущих плазматических клеток - потомков В-лимфоцитов, прошедших этап стимуляции антигеном, соматических гипермутаций и изотипического переключения синтеза антител. Предполагается, что во время созревания В-клетки происходят ошибки, которые приводят к хромосомным транслокациям с вовлечением генов иммуноглобулинов, в частности локуса тяжелой цепи (IgH) на 14-й хромосоме - область 14q32.

Изучение кариотипа миеломных клеток затруднено из-за их низкой пролиферативной активности. Аномалии кариотипа при использовании стандартных цитогенетических методов выявляются у 30-50% больных. Применение метода флуоресцентной гибридизации in situ (FISH) позволяет проводить цитогетические исследования в неделящихся клетках. Методом FISH хромосомные аномалии обнаруживаются у 89-96% больных миеломой.

Данные кариологических исследований свидетельствуют о хромосомной нестабильности, проявляющейся количественными и структурными изменениями хромосом. Наиболее характерными количественными аномалиями кариотипа при множественной миеломе являются моносомия 13-й, трисомия 3, 5, 7, 9, 15 и 19-й хромосом.
Наиболее важная прогностически значимая специфическая аномалия - частичная или полная делеция длинного плеча 13-й хромосомы (13q). При классическом цитогенетическом исследовании делеция, или моносомия, 13q определяется у 15% больных миеломой, при анализе методом FISH - у 39-54% первичных больных. Делеция короткого плеча 17-й хромосомы (17р13) с утратой или мутацией гена-супрессора опухолевого роста р53 выявляется у 30-35% первичных больных множественной миеломой и гораздо чаще на поздних стадиях развития болезни, а также при агрессивно протекающей миеломе. Структурные аберрации наиболее часто вовлекают хромосомы 1 (оба плеча), 6q, 1 lq и 14q32 (IgH локус).

Специфические изменения кариотипа при множественной миеломе чаще всего характеризуются наличием транслокаций с участием 14q32: t(l I;14)(ql3;q32), t(4;14)(pl6;q32), t(14;16)(q32;q23). Транслокации с вовлечением участка 14q32 захватывают район гена, контролирующего изотопическое переключение синтеза тяжелых цепей Ig. Исследования методом FISH показали, что транслокации с вовлечением области 14q32 обнаруживаются приблизительно у 50% больных с моноклональной гаммапатией неясного генеза (MGUS - monoclonal gammopathies of undetermined significance), у 75% - миеломой и более чем у 80% - плазмоклеточным лейкозом. Предполагается, что перестройки 14q32 имеют значение в патогенезе множественной миеломы, являясь одной из причин злокачественной трансформации, а делеция или мутация гена р53 скорее отвечает за опухолевую прогрессию.

Важную роль в процессе роста опухоли играют цитокины, секретируемые миеломными клетками и стромальными элементами костного мозга. Основным фактором роста миеломных клеток является интерлейкин-6 (ИЛ-6), секретируемый в основном стромальными элементами костного мозга. В миеломных клетках ИЛ-6 активирует трансдуцерную молекулу gpl30, пути внутриклеточной передачи сигнала JAK/STAT и др. В результате такой активации происходит стимуляция пролиферативной активности миеломных клеток при одновременном резком снижении их способности к апоптотической гибели.

Фактор некроза опухолей-а (ТНФ-а) является другим цитокином, играющим важную роль во взаимодействии между опухолевыми миеломными клетками и клетками стромы костного мозга. Фактор некроза опухоли-а регулирует синтез молекул адгезии на миеломных (LFA-1, VLA-4) и стромальных клетках (ICAM-1, VCAM-1). В результате происходит усиление адгезии миеломных клеток к стромальным клеткам костного мозга, что в свою очередь приводит к увеличению секреции ИЛ-6 костномозговым микроокружением.

Стимулирующее влияние на пролиферацию опухолевых плазматических клеток при множественной миеломе могут оказывать и другие цитокины: ГМ-КСФ (GM-CSF), ИЛ-1, ИЛ-3, ИЛ-5, инсулиноподобные факторы 1 и 2 (IGF-1, IGF-2), фактор роста гепатоцитов(HGF).

Некоторые цитокины ингибируют рост миеломных клеток. Наиболее мощным ингибитором роста плазматических клеток in vitro является интерферон-7. Интерлейкин-4 также замедляет пролиферацию миеломных клеток in vivo. Выраженной антипролиферативной активностью обладает интерферон-а.
Фенотип злокачественных плазматических клеток имеет две особенности. Первая заключается в том, что в процессе дифференцировки В-лимфоцитов в плазматические клетки происходит утрата большинства В-линейных маркеров, второй особенностью является приобретение большого количества адгезивных структур.
Наиболее важными иммунологическими маркерами плазматических клеток являются CD138 (синдекан-1) и CD38, а также присутствие в цитоплазме Ig (G,A, редко D, Е, L-цепи). Кроме того, плазматические клетки экспрессируют молекулы адгезии - CD44(HCAM), CD54 (ICAM-1). Экспрессия CD45 - общего лейкоцитарного антигена - снижается на стадии плазмоклеточной дифференцировки. Для плазматических клеток наиболее характерным является сочетание высокой экспрессии CD38 с низкой экспрессией (или ее отсутствием) CD45. Представительство этих антигенов (CD38+++, CD44+, CD45+, CD54+, CD138+) и clg является характерным как для нормальных плазматических клеток, так и для миеломных.

Основным иммунологическим маркером, позволяющим дифференцировать опухолевые и неопухолевые плазматические клетки, является антиген CD19. Нормальные плазматические клетки обычно сохраняют способность к экспрессии CD19 (одного из самых ранних В-линейных антигенов), в то время как большинство миеломных клеток теряют способность к его экспрессии.
Кроме того, на поверхности миеломных клеток часто выявляются CD58 (LFA-3) и CD56 (NCAM). Эти маркеры обычно на нормальных плазматических клетках не обнаруживаются.
Выраженная экспрессия CD28 выявляется при высокой пролиферативной активности миеломных клеток, обычно при профессировании и рецидивах болезни, и отсутствует на нормальных плазматических клетках.

Таким образом, миеломные клетки имеют следующий иммунофенотип: CD38+++, CD44+, CD45-/+, CD54+, CD138+, CD56+, CD58+, CD28-/+, clg, в то время как фенотип плазматических клеток в норме и при М ГНГ представлен CD38+++, CD44+, CD45-/+, CD54+, CD138+, CD56-, CD58-, CD28-, clg.

Большое значение в патогенезе множественной миеломы придается опухолевому ангиогенезу. Миеломные клетки синтезируют факторы роста эндотелия сосудов (VEGF-vascular endothelial growh factor) и металлопротеиназы (MP), которые, взаимодействуя с рецепторами на клетках стромы, стимулируют секрецию ИЛ-6 и ТНФ-а. В экспериментальных исследованиях показано, что VEGF и MP усиливают процесс неоваскуляризации опухоли и способствуют пролиферации миеломных клеток.







Дата добавления: 2015-10-15; просмотров: 453. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Лечебно-охранительный режим, его элементы и значение.   Терапевтическое воздействие на пациента подразумевает не только использование всех видов лечения, но и применение лечебно-охранительного режима – соблюдение условий поведения, способствующих выздоровлению...

Тема: Кинематика поступательного и вращательного движения. 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью, проекция которой изменяется со временем 1. Твердое тело начинает вращаться вокруг оси Z с угловой скоростью...

Понятие и структура педагогической техники Педагогическая техника представляет собой важнейший инструмент педагогической технологии, поскольку обеспечивает учителю и воспитателю возможность добиться гармонии между содержанием профессиональной деятельности и ее внешним проявлением...

Репродуктивное здоровье, как составляющая часть здоровья человека и общества   Репродуктивное здоровье – это состояние полного физического, умственного и социального благополучия при отсутствии заболеваний репродуктивной системы на всех этапах жизни человека...

Случайной величины Плотностью распределения вероятностей непрерывной случайной величины Х называют функцию f(x) – первую производную от функции распределения F(x): Понятие плотность распределения вероятностей случайной величины Х для дискретной величины неприменима...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия