Студопедия — Стоячие волны.
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Стоячие волны.






Особый интерес представляет собой результат интерференции двух волн с одинаковой амплитудой и частотой, распространяющихся навстречу друг другу. На опыте это можно осуществить, если на пути бегущей волны перпендикулярно к направлению распространения поставить хорошо отражающую преграду. В результате сложения (интерференции) падающей и отраженной волн возникнет так называемая стоячая волна. Пусть падающая волна описывается уравнением (16), а отраженная – уравнением (17).

Сложениеэтих двух волн дает Y = y1 + y2:

 

Y = 2A cosωt cos (26)

 

Это уравнение, называемое уравнением стоячей волны, удобно в дальнейшем анализировать в виде:

 

Y = 2A cosωt, (27)

 

где множитель

 

A0 = (28)

 

является амплитудой стоячей волны. Как видноиз выражения (28), амплитуда стоячей волны зависит от координаты точки, но не зависит от времени. У бегущей плоской волны амплитуда не зависит ни от координаты, ни от времени (при отсутствии затухания).

Примечание 4 Проделаем необходимые преобразования для определения суммарной волны.

Y = A[sin ω(t – x/v) + sin ω(t + x/v)] =

= 2Acos[ω/2(t – x/v – t - x/v)] sin[ω/2(t – x/v + t + x/v)] = 2Acos(-ωx/v) sin ωt = = 2Acos(ωx/v) sin ωt.

Или Y = A0sin ωt, где A0 = 2Acos(ωx/v).

 

Множитель sin ωt показывает, что в точках среды возникает колебание с той же частотой, что и колебания встречных волн. Так как функция - может принимать значения от 0 до 1, то амплитуда стоячей волны в зависимости от координаты точки может принимать значения (А0): от 0 до 2.

Точки стоячей волны, в которых амплитуда колебаний равна нулю, называют узлами, а точки, в которых она максимальна, называют пучностями. Координаты пучностей стоячей волны можно определитьизравенства

или

 

тогда (29)

где k = 0, 1, 2,....

Координаты узлов определяютсяиз равенства

Или ,

откуда следует

x= (30)

Из выражений (29) и (30) следует, что расстояние между соседними узлами (или между соседними пучностями) равно , а расстояние между ближайшими узлом и пучностью равно (рисунок- 3). Уравнение (27) показывает, что все точки среды, расположенные между двумя соседними узлами, колеблются в одной фазе, причем значение фазы определяется только временем. Для бегущей волны как следует из (16), фаза определяется как временем, так и пространственной координатой. В этом еще одно отличие между данными волнами. При переходе через узел фаза стоячей волны скачкообразно изменяется на 180о. Кривые 1 и 5, приведенные на рисунок 3, соответствуют максимальному отклонению частиц от положения равновесия в моменты времени, отличающиеся на половину периода. В другие моменты времени кривая отклонения частиц будет располагаться между этими двумя.

 

 

Рис. 3

 

При отражении волн на границе двух сред возникает либо узел, либо пучность (в зависимости от так называемых акустических сопротивлений сред). Акустическим сопротивлением среды называют величину . Если среда, от которой отражается волна, обладает более высоким акустическим сопротивлением, чем та, в которой эта волна возбуждается, то на границе раздела образуется узел. В этом случае фаза волны при отражении меняется на противоположную (на 180°). При отражении волны от среды с меньшим акустическим сопротивлением изменение фазы колебаний не происходит.

В отличие от бегущей волны, которая переносит энергию, в стоячей волне переноса энергии нет. Бегущая волна может двигаться вправо или влево, а у стоячей волны нет направления распространения. Под термином "стоячая волна" нужно понимать особое колебательное состояние среды, образованное интерферирующими волнами.

В момент, когда частицы среды проходят положение равновесия, полная энергия частиц, захваченных колебанием, равна кинетической. Она сосредоточена в окрестностях пучностей. Напротив, в момент, когда отклонение частиц от положения равновесия максимально, их полная энергия является уже потенциальной. Она сосредоточена вблизи узлов. Таким образом, два раза за период происходит переход энергии от пучностей к соседним узлам и наоборот. В результате средний по времени поток энергии в любом сечении стоячей волны равен нулю.

Стоячие волны различной природы (упругие, электромагнитные) проявляются во многих физических явлениях (например, колебания струн музыкальных инструментов, камертонов, колебания электрического тока в вибраторах антенн, голография).

Если плоская звуковая волна распространяется вдоль оси цилиндра в столбе воздуха, ограниченном его стенками и поршнем (рисунок 4), то в результате сложения падающей и отраженной от поршня волн образуется стоячая волна. Вследствие разности акустических сопротивлений поршня и воздуха на границе с поршнем будет находиться узел стоячей волны. На открытом же конце цилиндра будет находиться пучность.

 

Рис. 4

В этом случае в цилиндре могут установиться лишь такие стоячие колебания, при которых на длине столба L укладывается нечетное число четвертей длин волн, т.е. выполняется условие:

(31)

где n - любое целое число (n ≠ 0).

Из этого условия можно выразить длину волны

(32)

или частоту колебаний

(33)

 

Возникающие колебания частотами, удовлетворяющими условию (33), называются собственными колебаниями системы. Колебания с наименьшей частотой называют основным тоном, а остальные, с частотами 3 o, 5 o, 7 o, - обертонами.

Если частота фиксирована, то устойчивых колебаний можно добиться, изменяя L путем перемещения поршня и добиваясь таким образом выполнения условия (30). Расстояние между двумя соседними положениями поршня, при которых возникают устойчивые колебания, равно . На эту величину отличаются и соответствующие длины столбов воздуха в трубе.

 

 







Дата добавления: 2015-10-15; просмотров: 775. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Предпосылки, условия и движущие силы психического развития Предпосылки –это факторы. Факторы психического развития –это ведущие детерминанты развития чел. К ним относят: среду...

Анализ микросреды предприятия Анализ микросреды направлен на анализ состояния тех со­ставляющих внешней среды, с которыми предприятие нахо­дится в непосредственном взаимодействии...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия