Студопедия — Разложение функций в ряд Тейлора и его применение
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Разложение функций в ряд Тейлора и его применение

1. А.П. Рябушко, В.В. Бархатов, В.В. Державец, И.Е. Юруть, Индивидуальные задания по высшей математике, - Мн.: Выш. Шк., 2000, 303 с.

2. А.П. Рябушко, В.В. Бархатов, В.В. Державец, И.Е. Юруть, Индивидуальные задания по высшей математике, Часть 2- Мн.: Выш. Шк., 2002, 396 с.

3. А.П. Рябушко, В.В. Бархатов, В.В. Державец, И.Е. Юруть, Индивидуальные задания по высшей математике, Часть 3- Мн.: Выш. Шк., 2002, 288 с.

4. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в упражнениях и задачах, Ч.1: Учеб. Пособие для втузов. – М.: Высш. Школа, 1999, - 304 с.

5. Сборник задач по математике для втузов. Линейная алгебра и основы математического анализа, под редакцией А.В. Ефимова, Б.П. Демидовича.– М.: Наука, 1981, 464 с.

 

Практическое занятие 11-2часа

Ряды Тейлора. Разложения элементарных функций в ряд Тейлора.

Применения ряда Тейлора

Разложение функций в ряд Тейлора и его применение

Пример 1.

1) Разложить по степеням разности x-1 функцию y= x4-2x3+2x+2

Формула Тейлора:

f(x)=f(a)+ (x-a)+ (x-a)2+ (x-a)3+ (x-a)n+×××

Для того чтобы воспользоваться формулой Тейлора при x0=1 найдем: y(1)=2, y¢(1)=(4x3-6x2+2)çx=1=0,

y¢¢(1)=(12x2-12x)çx=1=0, y¢¢¢(1)=(24x+12)çx=1=12,

yIV (1)=24, yV (x)=0, и т.д.

 

Следовательно, x4-2x3+2x+2=2+

 

Пример 2. Вычислить с точностью d=10-3

Разложение функции в степенной ряд (1)

(-¥<x<¥)

Подставим в формулу (1) значение . Тогда

 

Так как остаток, знакочередующегося ряда |rn|£ Un+1 (и следствие из признака Лейбница остаток ряда всегда удовлетворяет условию

|Rn |<Un+1), то достаточно найти член Un+1, для которого Un+1<d

Тогда Sn даст значение функции требуемой точности.

Очевидно, что уже третий член ряда поэтому с точностью -3

Sin - 0,479

Пример 3. Вычислить dx с точностью до 0,01. Вычислим интеграл

dx. Для этого разложим подинтегрaльную функцию в степенной ряд. Так как =1+ при любом t, то, подставляя (-x2) в место t, получим:

Почленно интегрируя, найдем:

Получился знакочередующийся ряд, удовлетворяющий признакам Лейбница, следовательно, ошибка при замене суммы ряда его частной суммой по абсолютной величине меньше абсолютной величины первого из отброшенных его членов. В частности, положив, что интеграл равен сумме первых двух слагаемых, мы делаем ошибку, меньшую Отсюда следует, что, ограничиваясь только двумя слагаемыми, мы получаем приближенное значение интеграла с точностью до 0,01:

или

 

Пример 4. Найти пять первых членов разложения в степенной ряд решения дифферен-циального уравнения

y`=x2+y2, если y(1)=1.

Из данного уравнения находим, что у`(1)=1+1=2. Дифференцируем исходное уравнение: y`` =2x+2yy`, y``(1)=6

y```=2+2 (y`)2 + 2y y``, y```(1)=22

yIV=4y`y``+2y`y``+2yy```, yIV(1)=116 и т.д.

Подставляя найденные значения производных в ряд

, получаем

Пример 5. Вычислить с точностью =10-3. Очевидно, что . Воспользуемся биноминальным рядом:

при

поскольку уже третий член отбросить в силу того, что он меньше

(из следствия признака Лейбница;

Следовательно,

Аудиторное задание

1. Разложить по степеням x+1 многочлен

2. Разложить в ряд по степеням x функцию и найти область сходимости полученного ряда.

3. Найти разложение в степенной ряд по степеням х решения дифференциального уравнения (записать три первых, отличных от нуля, члена этого разложения).

a) ; б) ; в) .

4. Используя разложение подинтегральной функции в степенной ряд, вычислить указанный определенный интеграл с точностью до 0,001

а) ; б) ; в)

6. Вычислить указанную величину приближенно с заданной степенью точности , воспользовавшись разложением в степенной ряд соответствующим образом подобранной функции

а) ; б) ; в) arcsin




<== предыдущая лекция | следующая лекция ==>
Степенные ряды | Аудиторное задание

Дата добавления: 2015-10-15; просмотров: 1796. Нарушение авторских прав; Мы поможем в написании вашей работы!



Шрифт зодчего Шрифт зодчего состоит из прописных (заглавных), строчных букв и цифр...

Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

ФАКТОРЫ, ВЛИЯЮЩИЕ НА ИЗНОС ДЕТАЛЕЙ, И МЕТОДЫ СНИЖЕНИИ СКОРОСТИ ИЗНАШИВАНИЯ Кроме названных причин разрушений и износов, знание которых можно использовать в системе технического обслуживания и ремонта машин для повышения их долговечности, немаловажное значение имеют знания о причинах разрушения деталей в результате старения...

Различие эмпиризма и рационализма Родоначальником эмпиризма стал английский философ Ф. Бэкон. Основной тезис эмпиризма гласит: в разуме нет ничего такого...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Подкожное введение сывороток по методу Безредки. С целью предупреждения развития анафилактического шока и других аллергических реак­ций при введении иммунных сывороток используют метод Безредки для определения реакции больного на введение сыворотки...

Принципы и методы управления в таможенных органах Под принципами управления понимаются идеи, правила, основные положения и нормы поведения, которыми руководствуются общие, частные и организационно-технологические принципы...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия