Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Графики




 

Графики строятся на миллиметровой бумаге, на которую прежде всего наносятся координатные оси. На концах осей указываются откладываемые физические величины и их размерности. Затем на оси наносят масштабные деления так, чтобы расстояние между делениями составляло 1, 2, 5 единиц (или 0.1, 0.2, 0.5, или 10, 20, 50 и т.д.). Обычно порядок масштаба, т.е. 10±n выносится на конец оси. Например, для пути, пройденного телом, вместо 1000, 1100, 1200 и т.д. метров около масштабных делений пишут 1.0, 1.1, 1.2, а в конце оси физическую величину обозначают как S, 103 м или S•10-3, м. Точка пересечения осей не обязательно должна соответствовать нулю по каждой из осей. Начало отсчета по осям и масштабы следует выбирать так, чтобы график занял всю координатную плоскость. После построения осей на миллиметровку наносят экспериментальные точки. Их обозначают маленькими кружками, квадратиками и т.д. Если на одной координатной плоскости строится несколько графиков, то для точек выбираются разные обозначения. Затем от каждой точки вверх, вниз и вправо, влево откладывают отрезки, соответствующие погрешностям точек в масштабах осей. Если погрешность по одной из осей (или по обеим осям) оказывается слишком малой, то предполагается, что она отображается на графике размером самой точки.

 

 

Экспериментальные точки, как правило, не соединяются между собой ни отрезками прямой, ни произвольной кривой. Вместо этого строится теоретический график той функции (линейной, квадратичной, экспоненциальной, тригонометрической и т.д.), которая отражает проявляющуюся в данном опыте известную или предполагаемую физическую закономерность, выраженную в виде соответствующей формулы. В лабораторном практикуме встречаются два случая: проведение теоретического графика преследует цель извлечения из эксперимента неизвестных параметров функции (тангенса угла наклона прямой, показателя экспоненты и т.д.) либо делается сравнение предсказаний теории с результатами эксперимента.

 

В первом случае график соответствующей функции проводится "на глаз" так, чтобы он проходил по всем областям погрешности возможно ближе к экспериментальным точкам. Существуют математические методы, позволяющие провести теоретическую кривую через экспериментальные точки в определенном смысле наилучшим образом (например: метод наименьших квадратов).

 

При проведении графика "на глаз" рекомендуется пользоваться зрительным ощущением равенства нулю суммы положительных и отрицательных отклонений точек от проводимой кривой.

 

Во втором случае график строится по результатам расчетов, причем расчетные значения находятся не только для тех точек, которые были получены в опыте, а с некоторым шагом по всей области измерений для получения плавной кривой.

 

Нанесение на миллиметровку результатов расчетов в виде точек является рабочим моментом - после проведения теоретической кривой эти точки с графика убираются.

 

Если в расчетную формулу входит уже определенный (или заранее известный) экспериментальный параметр, то расчеты проводятся как со средним значением параметра, так и с его максимальным и минимальным (в пределах погрешности) значениями. На графике в этом случае изображается кривая, полученная со средним значением параметра, и полоса, ограниченная двумя расчетными кривыми для максимального и минимального значений параметра.

 

Правила построения графиков рассмотрим на следующем примере. Предположим, что в опыте исследовался закон движения некоторого тела. Тело двигалось прямолинейно, и задачей опыта было измерение расстояния, которое тело проходит за различные промежутки времени. После проведения некоторого числа опытов и обработки результатов измерений были найдены средние значения измеряемых величин и их погрешности. Требуется изобразить результаты опыта, представленные в табл. 2, в виде графика и найти из графика скорость тела, предполагая, что движение равномерное.

 

Таблица 2.

 

Зависимость пути, пройденного телом, от времениНомер опыта t, с Δt, с S, см ΔS, см

1 35.5 1.0 97 6

2 40.0 1.0 99 9

3 45.0 1.0 108 9

4 50.0 1.0 139 11

5 55.0 1.0 146 12

 

Последовательность операций

 

Строим оси координат и устанавливаем на них шкалы, исходя из интервалов изменения измеренных величин. Начало оси абсцисс (время) берем при t=30 с, а начало оси ординат (расстояние) - при S=80 см. Размечаем ось абсцисс с шагом 10 с, а ось ординат с шагом 20 см.

 

Наносим на координатную плоскость точки, представленные в таблице. Для каждой точки откладываем влево и вправо погрешность Δt в масштабе оси абсцисс, а вверх и вниз - погрешность ΔS в масштабе оси ординат.

 

Исходя из предположения о равномерном движении, т.е. о линейной зависимости S(t)=v0t, проводим прямую с таким расчетом, чтобы она наилучшим образом проходила через все измеренные точки. При проведении прямой учитываем, что в данном опыте при t=0 путь S=0 независимо от скорости, т.е. согласно теоретической формуле продолжение прямой должно проходить через точку (0,0), которая находится за пределами рабочего участка координатной плоскости. Так как скорость v=dS/dt, а производная геометрически представляется тангенсом угла наклона касательной к графику функции, то для равномерного движения тангенс угла наклона прямой дает скорость v0. Находить из графика следует именно тангенс, т.е. отношение противолежащего катета к прилежащему, взятых в масштабных единицах соответствующих осей. Очевидно, что угол наклона прямой зависит от выбора масштаба на осях. Поэтому измерение угла с последующим определением его тангенса смысла не имеет.

 

Для оценки погрешности проводим через экспериментальные точки еще две прямые - с максимальным и минимальным наклоном в пределах погрешностей большинства точек и с учетом того, что продолжения этих прямых должны пересекать точку (0,0).

 

Определяем тангенс угла наклона этих прямых и устанавливаем интервал, в пределах которого находится искомая величина (скорость). Окончательный результат построений показан на рис.1.

 

Следует заметить, что графическая обработка опытных данных не столь строга, как аналитическая, зато она проста и наглядна.

 

Рис. 1

 

В тех случаях, когда диапазон изменений измеряемой величины превышает порядок, при построении графика обычно применяют логарифмический масштаб. Для построения логарифмической шкалы по оси от начальной точки в некотором масштабе откладываются отрезки, равные десятичным логарифмам ряда чисел. Если отложен lga, то около соответствующей точки ставится пометка a. Около начальной точки должна стоять пометка 1 (lg1=0). Таким образом, на логарифмической шкале расстояние от пометки 1 до пометки α равно в выбранном масштабе lgα. Так как lg(10α)=1+ lgα, то пометки на логарифмической шкале на участке от 10 до 100 будут в точности соответствовать пометкам на участке от 1 до 10. Это же рассуждение может быть проведено и для других участков шкалы. Поэтому, для изображения чисел от 1 до 100 на логарифмической оси требуется увеличить длину оси всего в два раза по сравнению с осью, размеченной от 1 до 10. Пусть, например, на оси длиной 10 см требуется отобразить числа от 1 до 100. Тогда на одну декаду будет приходиться 5 см. Соответственно пометка 2 должна стоять на расстоянии lg2•5=1.5 см от начала оси, пометка 3 - на расстоянии lg3•5=2.4 см, а пометка 30 - на расстоянии lg30•5=7.4 см. На рис.2 приведен пример участка оси с логарифмической шкалой.

 

Рис. 2


Поможем в написании учебной работы
Поможем с курсовой, контрольной, дипломной, рефератом, отчетом по практике, научно-исследовательской и любой другой работой





Дата добавления: 2015-06-15; просмотров: 223. Нарушение авторских прав; Мы поможем в написании вашей работы!

Studopedia.info - Студопедия - 2014-2022 год . (0.019 сек.) русская версия | украинская версия
Поможем в написании
> Курсовые, контрольные, дипломные и другие работы со скидкой до 25%
3 569 лучших специалисов, готовы оказать помощь 24/7