Студопедия — Сферическая система координат
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Сферическая система координат






Телом отсчета для сферической системы координат является сфера с радиусом . Начало этой системы координат совмещают с центром сферы. Координатами являются геоцентрическая широта , долгота и радиус-вектор . Широтой называется угол между радиусом-вектором и плоскостью экватора. Долгота есть угол между плоскостью, проходящей через заданную точку и осью вращения (плоскость меридиана) и плоскостью меридиана, принятого в качестве нулевого. Связь между сферической системой и глобальной декартовой определяется формулами

(2.1)


В том случае, когда широта определяется как угол между плоскостью экватора и отвесной линией, сферическая система координат называется астрономической. Широта и долгота, определенные в этой системе мы будем обозначать через и .


2.3 Геодезическая система координат

С геодезической системой координат связывают понятия геодезической широты, долготы и высоты. Геодезическая широта В есть угол, под которым пересекается нормаль к поверхности эллипсоида с плоскостью экватора. Долгота -- двугранный угол между плоскостью нулевого меридиана и плоскостью меридиана, проходящего через заданную точку.

Геодезические широта и долгота отличаются от соответствующих астрономических координат, связанных с отвесной линией, так как отвесная линия не совпадает с нормалью к эллипсоиду. Отклонение отвесной линии можно спроецировать на две плоскости: плоскость меридиана и плоскость первого вертикала. Нетрудно понять, что обе эти составляющие можно определить через разности между астрономическими и геодезическими координатами

(2.2)


Отклонения отвесной линии составляют, как правило, первые несколько секунд дуги.

Заметим, что геодезическая и геоцентрическая долготы совпадают. Обе они определены как двугранный угол между плоскостью нулевого меридиана и плоскостью, содержащей ось вращения и заданную точку. Геоцентрическая же широта отличается от геодезической.

Рассмотрим точку , лежащую вне ОЗЭ. Опустим из этой точки перпендикуляр на поверхность эллипсоида и продолжим его до пересечения с экваториальной плоскостью (рис. 2). Проекцию точки на поверхность эллипсоида обозначим через Тогда отрезок PQ есть геодезическая высота точки . Угол, под которым упомянутый перпендикуляр пересекает плоскость экватора, есть геодезическая широта . Она относится как к точке , так и к точке . Геоцентрические широты этих двух точек, как видно из рисунка, различаются. Геоцентрическая широта точки угол между радиус-вектором этой точки и плоскостью экватора.

Рис. 2.

Установим связь между координатами точки , сжатием эллипсоида и широтами и . Поскольку точка лежит на поверхности эллипсоида, то ее прямоугольные координаты подчиняются уравнению эллипсоида вращения: . Рассмотрим сечение . Тогда, как легко видеть, . Чтобы определить , нужно найти угловой коэффициент нормали в точке . Уравнение нормали к кривой в точке имеет вид

(2.3)


У нас , поэтому , ,

Следовательно,

Определим отличие геоцентрической широты от геодезической . Имеем очевидные равенства

(2.4)


Второй эксцентриситет эллипса, как мы знаем, определяется следующим образом , поэтому

Для Земли второй эксцентриситет мал, поэтому, пренебрегая малыми второго порядка относительно сжатия, получим . Можно также считать, что

Учитывая сказанное, получим

Наибольшее отличие геодезической широты от геоцентрической достигается на широте 45° и составляет .

Связь глобальных декартовых координат с геоцентрическими определяется формулами (2.1). Определим теперь формулы, связывающие декартовы координаты с геодезическими. Это означает, что бы должны определить координаты точки через параметры эллипсоида и геодезические широту и долготу.

Поскольку , для определения координат , , точки достаточно, для начала, определить только координаты и , то есть все рассуждения проводить только для сечения . Обратимся к рис. 3.

Рис. 3.

Определим прямоугольные координаты точки , расположенной на высоте Н над поверхностью эллипсоида. Сначала определим координаты проекции точки на поверхность эллипсоида (точка ). Ее координаты в сечении Охz равны

Индексом "0" мы отметили принадлежность координат к точке, лежащей на поверхности эллипсоида. Как мы видели

поэтому

Остается определить радиус-вектор точки . Воспользуемся уравнением эллипса и выполним необходимые преобразования.

(2.5)


Выразим и через и , для чего воспользуемся приведенными выше формулами. Определим радиус-вектор точки

следовательно,

(2.6)


Обозначим

(2.7)


Теперь

(2.8)


Для произвольного сечения, проходящего через ось вращения , будем иметь

(2.9)


Теперь поднимем точку на высоту Н и совместим ее с точкой . Прямоугольные координаты изменятся на

(2.10)


Окончательно, теперь формулы для пересчета геодезических координат и Н в прямоугольные примут вид

(2.11)


Здесь , определенный формулой (2.7) имеет простой геометрический смысл: он равен отрезку нормали, проходящей через точку , от этой точки до точки пересечения ее с осью вращения эллипсоида. Справедливость этого утверждения предлагается доказать самостоятельно.


2.4 Эллипсоидальная система координат

Рассмотрим еще одну систему координат, имеющую приложение в теории гравитационного потенциала:

Эти формулы содержат не три, а четыре переменные величины. Четвертая переменная устанавливает семейство координатных поверхностей -- эллипсоидов. Убедимся в этом. Проделаем простые преобразования:

Разделив первое уравнение на а второе -- на , получим

Очевидно, что при получим уравнение эллипсоида вращения

где

Поскольку , имеем , отсюда параметр имеет простой физический смысл: он равен половине межфокусного расстояния. Понятно, что изменяя при условии , получим семейство софокусных эллипсоидов, играющих важную роль в теории потенциала фигур равновесия Построим теперь семейство координатных поверхностей . Проделаем очевидные преобразования

меняя , получим семейство однополостных гиперболоидов вращения. Обозначив , , получим уравнение гиперболоида в общепринятой форме.

Разделив у на х, получим . Изменяя , получим семейство плоскостей, проходящее через ось Оz. Все три семейства поверхностей образуют взаимно ортогональную систему.

 







Дата добавления: 2015-06-15; просмотров: 476. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Ситуация 26. ПРОВЕРЕНО МИНЗДРАВОМ   Станислав Свердлов закончил российско-американский факультет менеджмента Томского государственного университета...

Различия в философии античности, средневековья и Возрождения ♦Венцом античной философии было: Единое Благо, Мировой Ум, Мировая Душа, Космос...

Характерные черты немецкой классической философии 1. Особое понимание роли философии в истории человечества, в развитии мировой культуры. Классические немецкие философы полагали, что философия призвана быть критической совестью культуры, «душой» культуры. 2. Исследовались не только человеческая...

Индекс гингивита (PMA) (Schour, Massler, 1948) Для оценки тяжести гингивита (а в последующем и ре­гистрации динамики процесса) используют папиллярно-маргинально-альвеолярный индекс (РМА)...

Методика исследования периферических лимфатических узлов. Исследование периферических лимфатических узлов производится с помощью осмотра и пальпации...

Роль органов чувств в ориентировке слепых Процесс ориентации протекает на основе совместной, интегративной деятельности сохранных анализаторов, каждый из которых при определенных объективных условиях может выступать как ведущий...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия