Студопедия — Процессы изоморфной и изодиморфной сокристаллизации
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Процессы изоморфной и изодиморфной сокристаллизации






Процессы изоморфной сокристаллизации удобно изучать на примере образования истинных смешанных кристаллов, образованных солями бария и радия.

Прежде всего, необходимо отметить, что возможность обра­зования истинных смешанных кристаллов определяется нали­чием изоморфизма или изодиморфизма между соединениями микро- и макрокомпонентов.

В изучении явлений сокристаллизации большую роль сыграл закон изоморфизма, открытый Э. Митчерлихом. Согласно этому закону «аналогичные по составу соединения элементов, сходных по химическим свойствам, имеют одинаковую или очень близ­кую кристаллическую форму». Однако аналогичный состав соединений элементов, сходных по химическим свойствам, озна­чает в то же время одинаковый химический тип строения, т. е. наличие в них одинаковых структурных единиц, например ионов.

Для того чтобы могли образовываться истинные смешанные кристаллы, должны выполняться следующие условия: 1) веще­ства должны быть образованы элементами-аналогами или эле­ментами, проявляющими сходство структур в определенных ва­лентных состояниях; 2) вещества должны иметь одинаковую кристаллическую структуру и близкие параметры кристалличе­ской решетки. Этим требованиям полностью отвечают пары лю­бых одинаковых солей бария и радия, например ВаС12 — RаС12; ВаВг2— RаВг2; Ва(NО3)2— Rа(NO3)2.

Однако, как было установлено последующими исследова­ниями, закон Митчерлиха в его первоначальной формулировке оказался нестрогим в том отношении, что близкой, а иногда и совершенно одинаковой кристаллической формой обладают ве­щества, несходные в химическом отношении. Это относится, на­пример, к кристаллизующимся в кубической системе NаС1 и СаF2 и к кристаллизующимся в ромбической системе КМп04 и ВаSО4. Эти факты заставили Э. Митчерлиха включить в "поня­тие изоморфизма весьма существенный критерий — способность к образованию смешанных кристаллов или изоморфных смесей, иначе говоря, способность к совместной кристаллизации в виде однородных кристаллов, содержащих различные количества Двух компонентов.Таким образом, изоморфными Э. Миучерлих называл веще­ства, которые, будучи сходными в химическом отношении, обладают одинаковой кристаллической формой и способны образовывать смешанные кристаллы. Последнее условие яв­ляется важнейшим и наиболее прямым доказательством изоморфности двух соединений. Здесь мы имеем дело с понятием изоморфизма в узком смысле слова (изоморфизм первого рода, т. е. тот его случай, когда изоморфные вещества способны обра­зовывать смешанные кристаллы).

Необходимо отметить, что по представлениям Э. Митчерлиха соединения элементов, являющихся химическими аналогами, не обязательно должны быть изоморфными. Примером могут слу­жить NаС1 и СsС1, которые при комнатной температуре кри­сталлизуются в разных системах и неспособны к образованию истинных смешанных кристаллов. Напротив, изоморфизм каких-либо соединений обязательно указывает на их химическую ана­логию (одинаковый тип строения, наличие одинаковых струк­турных единиц, одинаковые валентные состояния элементов, участвующих в образовании соединений). Отсюда следует, что в ряде случаев изоморфными могут быть и соединения, отве­чающие одинаковым валентным состояниям элементов, заметно отличающихся по своим химическим свойствам. В качестве при­мера можно указать на соединения одновалентного таллия, серебра и щелочных металлов, а также на соединения кальция, стронция, бария и двухвалентного свинца, способные давать истинные смешанные кристаллы.

Таким образом, факт образования соединениями каких-либо элементов изоморфных смесей в общем случае служит не столько доказательством химической аналогии элементов, обра­зующих эти соединения, сколько доказательством сходства их валентных состояний и внутренней структуры. В самом деле, результаты исследований Э. Митчерлиха и Я. Берцелиуса в области изоморфизма селена и серы, а также соединений алю­миния, железа и хрома следует истолковывать не как доказа­тельство химической аналогии, а как доказательство сходства валентных состояний и структур некоторых химических форм этих элементов, относящихся к различным группам периодиче­ской системы Менделеева. Однако сам факт образования изо­морфных смесей, свидетельствующий о сходстве валентных со­стояний и структур двух соединений, имеет чрезвычайно важное значение для радиохимии и является основой косвенного метода установления химического состояния элемента в крайне разба­вленных растворах.

Закон Митчерлиха сыграл очень большую роль в изучении зависимости кристаллической формы от химического состава, в систематике химических элементов и установлении их атомных весов. Еще Д. И. Менделеев указывал, что «исторически первым важным и доказательным методом для открытия сходства двух разных элементов служил изоморфизм» [6].

Изоморфизм и связанная с ним способность к образованию изоморфных смесей являются измеримыми свойствами элемен­тов и их соединений. Благодаря этому применение закона Мит­черлиха позволило в ряде случаев не только установить сход­ство двух соединений разных элементов, но и определить фор­мулы неизвестных веществ. Так, на основании изоморфизма селената и сульфата калия Э. Митчерлиху удалось установить формулу открытой им селеновой кислоты. Им же впервые было предложено определять атомные веса на основании формулы соединения, найденной по изоморфизму. Определенный с по­мощью этого метода атомный вес селена оказался равным 79, что весьма близко к современному его значению (78, 96). Мето­дом изоморфизма Я. Берцелиус установил правильные фор­мулы окисей железа и алюминия, которым вначале приписывали состав РеОз и АЮ3. Эти окиси оказались изоморфными окиси хрома, формула которой была однозначно установлена им ранее. Таким образом выяснилось, что действительные атомные веса железа и алюминия должны быть вдвое меньше по сравнению с принимавшимися ранее значениями.

Определение состава и структуры соединений на основании данных изоморфизма не потеряло своего значения до настоя­щего времени. Особенно большое значение этот метод получил при изучении химии типично радиоактивных элементов. В этом случае метод изоморфного соосаждения является почти един­ственным способом, позволяющим судить о химических формах изучаемого элемента в крайне разбавленных растворах.

Говоря об изоморфизме, обусловливающем образование истинных смешанных кристаллов, необходимо рассмотреть дру­гое явление, играющее очень важную роль в этом отношении,— явление изодиморфизма или принудительного изоморфизма. Оказывается, что истинные смешанные кристаллы могут обра­зовывать соединения, отличающиеся по составу и кристалли­зующиеся в различных по симметрии кристаллических решетках.

Так, уже в первых своих исследованиях Э. Митчерлих нашел, что сульфаты меди и марганца, железа и кобальта, а также магния, цинка и никеля представляют собой вещества, отличаю­щиеся по кристаллической форме и содержанию воды. Первая группа сульфатов (медь, марганец) кристаллизуется в триклин-ной системе с пятью молекулами воды, вторая группа (железо, кобальт) — в моноклинной системе с шестью молекулами воды, третья группа (магний, цинк, никель) — в ромбической системе с семью молекулами воды. Вместе с тем все эти сульфаты спо­собны давать в определенных условиях истинные смешанные кристаллы. Так, сульфат железа кристаллизуется в интервале температур от —10,8 до 56,6° в виде FеS04-7Н2О моноклинной системы; сульфат марганца кристаллизуется в интервале от — 11,4 до 8,6° в виде МпS04 • 7Н2О моноклинной системы, однако при температуре 8,6° начинает кристаллизоваться в виде МпSО4-•5Н2О триклинной системы. При температуре 0° эти соли изо­морфны и образуют непрерывный ряд твердых растворов; при температуре 20° соли изодиморфны.

Если в растворе имеется избыток FеSО4, то при кристалли­зации выделяются твердые растворы FеS04-7Н20—МпSО4-7Н2О моноклинной системы. Наоборот, при избытке сульфата мар­ганца получаются смешанные кристаллы другого.типа, а именно МпSО4-5Н2О—FеSО4-5Н2О триклинной системы. Э. Митчерлих доказал, что в смешанных кристаллах подобного типа оба сульфата имеют одинаковое число частиц воды, т. е. один из компонентов приобретает несвойственные ему в данных условиях число частиц воды и кристаллическую форму.

Дальнейшими исследованиями было установлено, что в этом случае вещества могут кристаллизоваться в двух кристалличе­ских формах, из которых одна является в обычных условиях нестабильной, но становится устойчивой в смешанных кри­сталлах.

Аналогичным образом обстоит дело и в случае пары солей ВаС12 и РЬС12. Хлорид бария кристаллизуется в виде ВаС12-2Н2О в моноклинной системе, безводный хлорид свинца—• в ромбической системе. Кристаллизация ВаС12-2Н2О в присут­ствии хлорида свинца приводит к образованию смешанных кри­сталлов. При этом также имеет место изодиморфизм, т. е. сокристаллизующаяся соль микрокомпонента может существовать в виде двух кристаллических форм: одной устойчивой неизо­морфной (в данном случае безводный РЬС12) и другой неустой­чивой (РЬС12 • 2Н2О), изоморфной с кристаллизующейся солью.

Таким образом, изодиморфизм заключается в своего рода приспособлении структуры примеси (микрокомпонента) к струк­туре основного вещества (макрокомпонента) в твердом растворе, если стабильные структуры чистых компонентов раз­личны, но каждая из структур возможна для обоих чистых ком­понентов, причем одна как стабильная, а другая как неустой­чивая при данной температуре.

В случае изодиморфизма смешиваемость обоих компонентов обычно ограничена (т. е. существует верхняя граница смеши­ваемости). Однако трудно сказать, имеет ли эта особенность общий характер и сохраняется ли она тогда, когда компоненты различаются только типом кристаллической решетки (например, КС1 и СзС1). Для последнего случая не исключена возможность образования непрерывного ряда смешанных кристаллов (напри­мер, при высоких температурах).

Поскольку в радиохимии чаще всего приходится иметь дело с крайне малыми концентрациями веществ, постольку наличие верхней границы смешиваемости в случае изодиморфных кри­сталлов не имеет существенного значения. Это дает нам право рассматривать изоморфные и изодиморфные смеси совместно.

Очень важно отметить, что при совместной кристаллизации двух изоморфных или изодиморфных веществ образование сме­шанных кристаллов происходит всегда, как бы ни была мала концентрация одного из кристаллизующихся веществ, если только концентрация раствора по отношению к другому веще­ству (макрокомпоненту) достаточна для того, чтобы могла начаться кристаллизация. Это объясняется тем, что при кри­сталлизации изоморфных и изодиморфных веществ образование смешанных кристаллов происходит в результате замещения в кристаллической решетке иона, атома или молекулы одного из соединений на ион, атом или молекулу (в зависимости от типа решетки) другого соединения. Таким образом, одним из отли­чительных свойств истинно смешанных кристаллов (изоморф­ных и изодиморфных) является отсутствие нижней границы смешиваемости.

Более широкое определение понятия изоморфизма было дано В. Гольдшмидтом [7] на основании изучения внутренней струк­туры кристаллов рентгенографическим методом.

В. Гольдшмидт называет изоморфными, в широком смысле этого слова, вещества, обладающие аналогичной кристалличе­ской структурой, которая определяется:

а) численным соотношением различных частиц, образующих
кристалл;

б) близким соотношением размеров частиц;

в) сходством поляризационных свойств частиц;

г) однотипностью связи.

К аналогичному определению изоморфизма пришел в ре­зультате многолетних исследований Г. Гримм.

Из изложенного выше следует, что одинаковая валентность замещающих друг друга компонентов и их химическая аналогия не являются обязательным условием изоморфности веществ.

По современным представлениям изоморфизм требует фор­мальной аналогии химического состава, т. е. однотипности хи­мической формулы, что позволяет объяснить образование смешанных кристаллов в системах типа КВF4—ВаSО4. Известны также случаи, когда некоторые химически аналогичные веще­ства, имеющие одинаковую кристаллическую структуру, не мо­гут образовать смешанных кристаллов.

Так, ион Nа+ не может заместить в простейших структурах ион Li+, так как большая разница в размерах радиусов этих ионов (r Na+= 0,98 А, rLi+ = 0,68 А) резко сказывается на размерах элементарных ячеек (5,63 А для NаС1, 5,13 А для LiCl). Но эти же ионы могут замещать друг друга в сложных соединениях состава LiМпРО4 и NaМпР04, так как относительная разница в размерах элементарных ячеек в этом случае значительно меньше.

По классификации В. Гольдшмидта существует изоморфизм трех родов.

Изоморфизм I рода требует постоянства суммы зарядов ионов (или валентностей) и одинакового распределения 'этих зарядов по отдельным частицам в обоих веществах (изомор­физм этого рода включает в себя изоморфизм по Митчерлиху), Пример: SrSО4—ВаSО4; К24—К2SеО4.

Изоморфизм II рода также требует постоянства суммы ва­лентностей, но их распределение по частицам может быть различным. Пример: SгSО4—КСlO4.

Изоморфизм III рода требует одинакового количественного соотношения частиц, образующих кристалл, но сумма их валентностей может быть различной. Пример: SгS04—КВF4.

Таким образом, изоморфизм по Митчерлиху является част­ным случаем изоморфизма по Гольдшмидту —Гримму.

В. Г. Хлопин, совместно с Б. А. Никитиным установили принципиальное различие между изоморфизмом I рода и изо­морфизмом II и III родов, заключающееся в том, что во втором случае, в отличие от изоморфизма I рода, существует нижняя граница смешиваемости.







Дата добавления: 2015-06-15; просмотров: 707. Нарушение авторских прав; Мы поможем в написании вашей работы!



Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Сосудистый шов (ручной Карреля, механический шов). Операции при ранениях крупных сосудов 1912 г., Каррель – впервые предложил методику сосудистого шва. Сосудистый шов применяется для восстановления магистрального кровотока при лечении...

Трамадол (Маброн, Плазадол, Трамал, Трамалин) Групповая принадлежность · Наркотический анальгетик со смешанным механизмом действия, агонист опиоидных рецепторов...

Мелоксикам (Мовалис) Групповая принадлежность · Нестероидное противовоспалительное средство, преимущественно селективный обратимый ингибитор циклооксигеназы (ЦОГ-2)...

Основные разделы работы участкового врача-педиатра Ведущей фигурой в организации внебольничной помощи детям является участковый врач-педиатр детской городской поликлиники...

Ученые, внесшие большой вклад в развитие науки биологии Краткая история развития биологии. Чарльз Дарвин (1809 -1882)- основной труд « О происхождении видов путем естественного отбора или Сохранение благоприятствующих пород в борьбе за жизнь»...

Этапы трансляции и их характеристика Трансляция (от лат. translatio — перевод) — процесс синтеза белка из аминокислот на матрице информационной (матричной) РНК (иРНК...

Studopedia.info - Студопедия - 2014-2024 год . (0.009 сек.) русская версия | украинская версия