Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

КЛАССИФИКАЦИЯ И ПОТРЕБИТЕЛЬСКИЕ СВОЙСТВА ЭЛЕКТРОТОВАРОВ




 

Большинство рецепторов относятся к семейству семикратно пересекающих мембрану серпентиновых (змееподобных) рецепторов. Эти рецепторы выполняют разнообразные биологические сигнальные функции. К ним относятся рецепторы вкусовых клеток. Сотни различных разновидностей рецепторов, находящихся на клетках обонятельных луковиц нашего носа передают информацию относительно присутствия лигандов-ароматов. Серпентиновые рецепторы имеют очень древнее происхождение. Их используют, например, клетки дрожжей, которые выделяют необходимые для спаривания полипептидные факторы и распознают их с помощью поверхностных рецепторов, представляющих собой все те же семикратно пересекающие мембрану серпентиновые рецепторы. Уникальная структура лиганд-связывающих участков серпентиновых рецепторов позволяет связывать лиганды различной природы и молекулярной массы.

Существуют сотни различных форм G-белковых рецепторов, а химическое разнообразие их лигандов чрезвычайно велико. Высокоспецифичные рецепторы этого семейства реагируют на:

ü небольшие молекулы, такие как катехоламины, пептиды и хемокины;

ü высокомолекулярные соединения, такие как гликопротеиновые гормоны;

ü тромбин;

ü световые импульсы;

ü летучие пахучие вещества.

 

Хотя общее строение G-белков одинаково, выявлены важные различия:

Ø различное расположение этих белков в липидном бислое;

Ø различия пространственной структуры рецепторов, что объясняет наличие различных
участков связывания и специфичность этих молекул.

 

Рисунок 8 иллюстрирует некоторые структурные различия рецепторов, сцепленных с G-белком, и объясняет широкую лигандную специфичность белков этого класса.

 

 

К началу 90-х годов было выделено более ста таких рецепторов, сопряженных с G-белком. К этому суперсемейству относятся рецепторы катехоламинов, ацетилхолина, серотонина, гистамина, ангиотензинов и др.

Они образуют суперсемейство интегральных белков длиной 400-600 аминокислот. В составе цепочки имеются 7 высококонсервативных участков, образованных 22-28 гидрофобными аминокислотами (рис.9 и рис. 10). Данные гидрофобные участки образуют, вероятно, альфа-спирали и 7 раз прошивают плазматическую мембрану. Они разделены крупными гидрофильными сегментами, обращенными наружу и внутрь клетки. N-конец молекулы рецептора расположен во внеклеточном пространстве и имеет участки, по которым происходит N-гликозилирование. Предполагается, что сахарные участки участвуют в прикреплении N-конца рецептора к мембране. На C-концевом фрагменте, обращенном внутрь клетки, имеются участки, по которым может происходить фосфорилирование цАМФ-зависимой ГТФазы. Участок взаимодействия с ГТФ-связывающим белком находится в третьей цитоплазматической петле.

Отличительными структурными чертами серпентиновых рецепторов вообще является наличие внеклеточного N-конца и внутриклеточного С-конца, семи трансмембранных спиралей (ТМ), трех внеклеточных (е1-3) и трех внутриклеточных петель (i1-3) (см. рис. 10).

 


G-белки – это семейство белков, относящихся к GTPазам и функционирующих в качестве вторичных посредников во внутриклеточных сигнальных каскадах. G-белки названы так, поскольку в своём сигнальном механизме они используют замену GDP на GTP как молекулярный функциональный «выключатель» для регулировки клеточных процессов.

G-белки делятся на две основных группы:

Ø «большие» гетеротримерные – это белки с четвертичной структурой, состоящие из трех субъединиц:

ü альфа(α),

ü бета (β),

ü гамма (γ)

Ø «малые» – это белки из одной полипептидной цепи, они имеют молекулярную массу 20-25 кДа и относятся к суперсемейству Ras (малые G-белки, регулируют деление клеток) малых GTPаз. Их единственная полипептидная цепь гомологична α-субъединице гетеротримерных G-белков.

Обе группы G-белков участвуют во внутриклеточной сигнализации.

 

Основной механизм сигнального действия G-белков.G-белок состоит из трех полипептидов:

ü α-субъединица, соединена с молекулой GTP и гидролизует ее,

ü β- и γ-субъединицы образуют димер, плотно соединенный нековалентными связями.

 

При соединении α-субъединицы с молекулой GDP и с βγ-субъединицами образуется неактивный тример, который прикрепляется к С-концевому участку рецептора. Связывание лиганда с этим рецептором приводит к изменению конформации цитоплазматического домена рецептора. Конформация α-субъединицы также изменяется, при этом ее сродство к GDP снижается, и GDP отщепляется от активного участка α-субъединицы.

GTP быстро связывается с активным участком, поскольку его внутриклеточная концентрация приблизительно в 10 раз превышает концентрацию GDP. После связывания GTP α-субъединица принимает активную конформацию и отщепляется как от рецептора, так и от βγ-субъединицы. GTP-связанная α-субъединица активирует различные эффекторные молекулы (например, аденилатциклазу, образующую сАМР). α-субъединица остается в активном состоянии до тех пор, пока входящая в ее состав GTPaзa не гидролизует GTP до GDP. Сразу после гидролиза GTP α- и βγ-субъединицы вновь соединяются и возвращаются к рецептору. Основные этапы этого процесса представлены на рис. 11.

Раньше считалось, что только α-субъединица G-белка взаимодействует с эффектором, а βγ-комплекс либо совсем не участвует в этом процессе, либо действует как отрицательный регулятор. Сейчас известно, что βγ-субъединица также может активировать эффекторные молекулы (например, мускариновые К+-каналы). Таким образом, и α-субъединица, и βγ-комплекс участвуют в регуляции клеточного ответа.

Эффекторные молекулы, взаимодействующие с G-белками. G-белки играют ключевую роль в активации каскада эффекторных молекул. К основным эффекторным молекулам, контролируемым G-белками, относятся:

ü аденилатциклаза

ü фосфолипаза С (PLC)

ü фосфолипаза А2 (PLA2)

ü фосфоинозитид-3-киназа (РI3-киназа)

ü киназа β-адренорецептора (PARK)

 

Хотя в регуляции участвуют и α-субъединица, и βγ-комплекс, механизм регуляции специфичен для каждого эффектора. Например, существуют несколько различных форм аденилатциклазы. Каждая форма этой эффекторной молекулы активируется различными субъединицами G-белка: либо α, либо βγ, либо обеими субъединицами.

Физиологическая роль рецепторов, сопряженных с G-белками.Рецепторы, связанные с G-белками вовлечены в широкий круг физиологических процессов. Вот некоторые примеры:

1. зрение: опсины используют реакцию фотоизомеризации для превращения электромагнитного излучения в клеточные сигналы. Родопсин, например, использует превращение 11-цис-ретиналя в полностью-транс-ретиналь для этой цели

2. обоняние: рецепторы обонятельного эпителия связывают пахучие вещества (обонятельные рецепторы) и феромоны (вомероназальные рецепторы)

3. регуляция поведения и настроения: рецепторы в мозге млекопитающих связывают несколько различных нейромедиаторов, включая серотонин, дофамин, гамма-аминомасляную кислоту (ГАМК) и глутамат

4. регуляция активности иммунной системы и воспаления: хемокиновые рецепторы связывают лиганды, которые осуществляют межклеточную коммуникацию в иммунной системе; рецепторы, такие как гистаминовый рецептор, связывают медиаторы воспаления и вовлекают определенные типы клеток в воспалительный процесс

5. функционирование вегетативной нервной системы: как симпатическая, так и парасимпатическая нервная система регулируются посредством рецепторов, связанных с G-белками, ответственных за многие автоматические функции организма, такие как поддержание кровяного давления, частоты сердечных сокращений и пищеварительных процессов

 

Усиление в каскадах передачи сигналов.В течение краткого периода своей активности аденилатциклаза производит несколько сотен молекул цАМФ (рис. 12). После того, как произведенные молекулы цАМФ активируют протеинкиназу А, она фосфорилирует и активирует фермент гликогенфосфорилазу, которая расщепляет гликоген до глюкозо-1-фосфата. Протеинкиназа А фосфорилирует также гликогенсинтазу, что приводит к ингибированию ее активности и, таким образом, предотвращает преобразование освобожденной глюкозы в гликоген. Эти два эффекта вместе обеспечивают мобилизацию глюкозы через расщепление гликогена, запасенного в печени.

В этом каскаде происходит огромное усиление сигнала. Одна молекула адреналина может вызвать активацию сотен α субъединиц G белков. Каждая из них в свою очередь будет активировать аденилатциклазу, которая в свою очередь синтезирует сотни молекул цАМФ. цАМФ активирует протеинкиназу А, которая модифицирует сотни молекул-мишений в клетке.

 

 
 

КЛАССИФИКАЦИЯ И ПОТРЕБИТЕЛЬСКИЕ СВОЙСТВА ЭЛЕКТРОТОВАРОВ.







Дата добавления: 2015-04-16; просмотров: 675. Нарушение авторских прав; Мы поможем в написании вашей работы!


Рекомендуемые страницы:


Studopedia.info - Студопедия - 2014-2021 год . (0.004 сек.) русская версия | украинская версия