Студопедия — Горелки и камеры сгорания
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Горелки и камеры сгорания






Горелки котельных топок и камеры сгорания газотурбинных (ГТУ) и других энергоустановок отличаются от камер сгорания двс отсутствием поршня и системой аэродинамических волн давления, ударных и детонационных волн горения, и эфирных ударных волн. Последнее качество явилось решающим отличием для реализации именно в автомобильном двигателе азотного цикла и режима работы с пониженным расходом топлива, а также – полностью бестопливного режима. Впервые и единственно на автомобилях были достигнуты эти режимы благодаря наличию поля разных волн, способствующих разрушению молекул воздуха внутри цилиндров двигателя с освобождением их свободных электронов, которые стали работать генераторами энергии вместо электронов, поставляемых в плазму горения топливом.

Поэтому к горелкам применимы все те технические решения и конструкции, способы и рекомендации, которые даны для двигателей внутреннего сгорания.

Двигатели тоже применяют в качестве камер сгорания. Но это – сложные камеры, имеющие движущиеся и трущиеся детали, существенно снижающие ресурс энергоустановки и увеличивающие эксплуатационные затраты. В годы перестройки в России с 1992 года есть примеры реализации этой идеи не от хорошей жизни. Дизель – генератор заставляют работать в постоянном режиме, как котельный агрегат. Всю непотребленную электрическую и тепловую энергию от утилизации тепла охлаждающих воды, масла и отходящих газов аккумулируют путем нагрева воды в резервуаре. При пиковых нагрузках эту теплоту отдают потребителю. Электрическая и тепловая энергия, полученная по такой схеме, иногда оказывается дешевле, чем от централизованных энергосистем, особенно, в удаленных районах, например, Камчатки. Но по моему мнению – это только от беспредела частных лиц монополий при назначении тарифов.

Приведенная схема с двигателями внутреннего сгорания на азотном бестопливном режиме работы может быть применена и сейчас. В этом случае вычитаются затраты (оплата) топлива ввиду его отсутствия, но увеличенные затраты на ремонт и замену машин ввиду малого ресурса остаются. Впрочем, это все нужно хорошо подсчитать, так как есть тихоходные двигатели с большим моторесурсом, сопоставимым с ресурсом котельных агрегатов и газотурбинных установок.

Конечно, лучше иметь аналогичные традиционным горелки и камеры сгорания с неподвижными деталями, имеющие высокий ресурс работы и малые эксплуатационные затраты.

Общая стратегия создания таких горелок для работы в бестопливном (или – малотопливном) режиме такая же, как и для двигателей внутреннего сгорания, описанная в настоящей книге и /1, 2, 3/. Она состоит в том, что воздух должен пройти докамерную обработку в оптимизаторе, которая заключается в его ионизации в конечном счете, а затем – внутрикамерную обработку с освобождением отрицательных ионов от «сидящих» на них электронов связи, которые становятся свободными электронами – генераторами энергии. Поскольку вся эта идеология, теория и практика изложены подробно ранее, то остановимся только на возможных конструктивных технических решениях грелок. Еще раз скажем, что действующих бестопливных камер сгорания в настоящее время нет, кроме камер сгорания двс, и то только карбюраторных.

Внешне горелка мне представляется в виде прямоточного реактивного двигателя, а проще – в виде работающей паяльной лампы, хотя это и не единственный вариант дизайна, особенно по сути процесса горения (выше уже был вариант камер сгорания двс и будут еще разные варианты горелок).

Докамерную обработку воздуха проводим в оптимизаторе. Оптимизатор, видимо, должен быть магнитным (наиболее удобно, доступно и достаточно эффективно). К нему могут быть добавлены меры усиления эффекта: концентраторы, катализаторы, прерывность действия, резонанс, наложение высокого напряжения, ультразвук, ультрафиолет, электромагнитные волны и т.п.

Внутрикамерную обработку воздуха следует проводить также, как и докамерную и можно дополнить: адресным микродозированием топлива; свечами зажигания разных типов, в том числе, авиационной высокочастотной, а также – калильной; системой электромагнитных, электринных и акустических волн; вращательным движением газа для лучшего катализа молекул за счет разрежения на оси вращения; резонаторами и резонансными колебаниями среды в камере сгорания; эжекторным выхлопом (по Чистову и Пушкину /1/) с объединением нескольких камер на линейный или кольцевой эжектор; электрический разряд: тлеющий, искровой, дуговой; созданием локального разрежения, например, сверхзвуковым расширением и т.п.

Итак, облик горелки для котельных агрегатов отличается от обычных наличием оптимизатора для докамерной обработки воздуха и средств катализа и зажигания для внутрикамерной обработки.

Камеры сгорания газотурбинных установок отличаются от камер сгорания котельных агрегатов, в которых установлены горелки, наличием устройств подвода вторичного воздуха для снижения температуры и компактностью.

Камеры двигателей внешнего сгорания (типа Стирлинга, Сказина /1, 2, 3/) больше похожи на камеры котельных агрегатов. На последнем следует остановиться особо, так как у двигателей Сказина много существенных отличий. Одно из главных отличий – это наличие сверхзвукового нагнетателя Цандера с неподвижными деталями вместо обычного вращающегося турбокомпрессора. А поскольку турбины в ГТУ нужны именно для высокооборотного привода компрессора, то в реактивном двигателе Сказина такой турбины нет, как и турбокомпрессора. Получается уже не прямоточный реактивный двигатель, а как обычный с повышением давления, но без турбины и без турбокомпрессора, что существенно увеличивает ресурс и надежность. А вместе с бестопливным режимом работы двигатель Сказина – это очень неплохой вариант для самолета с неограниченным радиусом действия, дальностью и продолжительностью полета.

Второе отличие двигателя Сказина – это полная утилизация тепла в двигателе по принципу, чем больше потерь, тем лучше кпд. В результате, расчетный кпд близок к единице (как практический кпд у Р.М. Пушкина в его работающем реактивном двигателе /1/). Это не имело бы значения для нашего бестопливного цикла, так как воздуха вокруг океан и его не стоило экономить как органическое топливо. Но кпд, равный единице, дает возможность еще снизить габариты и вес энергоустановок, что для самолетов существенно.

Третье отличие двигателя Сказина в том, что он может работать по замкнутому циклу без потребления воздуха извне за счет его запасов во внутреннем рабочем контуре циркуляции. А это – увеличение и высоты полета и скорости.

Введение импульсной эжекции и смешения позволит за счет разгона звуковой волны природными силами исключить использование воздуха в качестве топлива и сделать двигатель еще более простым и низкотемпературным. Такая задача частично решена в /48, 49,50/.

Элементы горелок

До камеры сгорания

1. Оптимизаторы – ионизация воздуха: магнитные, в т.ч. с катализатором и концентратором, с наложением электрического поля высокого напряжения (ВН), особенно – импульсного. Импульсный магнитный поток.

В камере сгорания

2. Свечи зажигания: электрический разряд – тлеющий, искровой, дуговой; постоянный, частотный, импульсный (в т.ч. сдвоенный: 1-й такт – дополнительная ионизация, 2-й такт – разрушение ® зажигание).

Калильные свечи: шарик, обечайка…

3. Электроды ВН – на всю камеру сгорания, в т.ч. коаксиальные.

4. Ультразвуковой генератор (стоячих волн)

5. Устройство для сброса давления:

5. 1. Сверхзвуковое сопло

5.2. Дозвуковое сопло

5.3. Эжектор: линейный, кольцевой, вихревой.

5.4. Импульсный генератор: перегородки, пластинки, трубки…

5.5. Вихревая камера сгорания (на оси – разрежение).

6. Резонатор. Собственные колебания (объема) резонатора в резонансе с вынужденными колебаниями процесса горения «зажигание – погасание» от электрического разряда или иного источника.

7. Другие инициирующие устройства: ультрафиолет, лампа Чижевского, плазмотроны…








Дата добавления: 2015-08-17; просмотров: 557. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

МЕТОДИКА ИЗУЧЕНИЯ МОРФЕМНОГО СОСТАВА СЛОВА В НАЧАЛЬНЫХ КЛАССАХ В практике речевого общения широко известен следующий факт: как взрослые...

СИНТАКСИЧЕСКАЯ РАБОТА В СИСТЕМЕ РАЗВИТИЯ РЕЧИ УЧАЩИХСЯ В языке различаются уровни — уровень слова (лексический), уровень словосочетания и предложения (синтаксический) и уровень Словосочетание в этом смысле может рассматриваться как переходное звено от лексического уровня к синтаксическому...

Плейотропное действие генов. Примеры. Плейотропное действие генов - это зависимость нескольких признаков от одного гена, то есть множественное действие одного гена...

Типы конфликтных личностей (Дж. Скотт) Дж. Г. Скотт опирается на типологию Р. М. Брансом, но дополняет её. Они убеждены в своей абсолютной правоте и хотят, чтобы...

Гносеологический оптимизм, скептицизм, агностицизм.разновидности агностицизма Позицию Агностицизм защищает и критический реализм. Один из главных представителей этого направления...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия