Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

x(t) y(t)


Контрольная работа № 1

По дисциплине «Автоматизация производственных процессов и производств»

Тема: «Расчет динамических и частотных характеристик объекта»

ВАРИАНТ № 32

Структурная схема объекта имеет вид:

x(t) y(t)

 


Передаточные функции соединения равны соответственно:

 

Определить в общем и частном виде:

1. Дифференциальное уравнение соединения;

2. Передаточные функции для разомкнутой и замкнутой системы;

3. Записать характеристическое уравнение разомкнутой и замкнутой системы;

4. Выражения для временных характеристик разомкнутой системы. Построить графики h(t),w(t).

5. Выражения для частотных характеристик разомкнутой системы. Построить графики A(w),j(w),W(jw).

6. Дифференциальное уравнение для замкнутой системы.

 

 

Объект представляет собой последовательное соединение идеального дифференцирующего звена с передаточной функцией и апериодического звена 1-го порядка с передаточной функцией .

Последовательным называется соединение двух или нескольких звеньев, при котором сигнал на выходе предыдущего звена является входным для последующего.

 

Идеальное дифференцирующее звено описывается уравнением:

 

Апериодическое звено 1-го порядка описывается дифференциальным уравнением: ;

передаточной функцией: ,

где к- коэффициент передачи, Т- постоянная времени звена,с.

 

Передаточной функцией звена (системы) называется отношение изображения по Лапласу выходной величины к изображению по Лапласу входной величины при условии, что все остальные воздействия равны нулю.

 

Передаточная функция разомкнутой системы по задающему воздействию находится путём перемножения передаточных функций всех звеньев прямой цепи регулирования.

 

Передаточная функция замкнутой системы находится из выражения:

,

где W(p)- передаточная функция разомкнутой системы,

M(p),N(p),D(p)- полиномы от комплексной переменной р.

 

Так как соединение последовательное, то передаточную функцию разомкнутой системы получим как произведение передаточных функций звеньев:

(1)

Подставим в (1) значения параметров объекта и получим выражение для передаточной функции разомкнутой системы в частном виде:

Передаточную функцию замкнутой системы найдем по формуле:

(2)

Подставим в (2) параметры объекта, получим передаточную функцию замкнутой системы в частном виде:

Характеристическим уравнением разомкнутой (замкнутой) системы называется полином знаменателя передаточной функции разомкнутой (замкнутой) системы, приравненный нулю (N(p)=0, D(p)=0).

 

Согласно определению, характеристическое уравнение разомкнутой системы найдем из выражения (1):

и в частном виде:

Характеристическое уравнение замкнутой системы:

и в частном виде:

Дифференциальное уравнение соединения найдем из передаточной функции разомкнутой системы (1):

Последнее выражение есть дифференциальное уравнение соединения в общем виде. В частном виде, получим следующее выражение:

Найдем временные характеристики соединения:

 

Переходной характеристикой h(t) звена (системы) называется его реакция на воздействие в виде единичной ступенчатой функции при нулевых начальных условиях.

Весовой функцией звена (системы) называется его реакция на воздействие в виде единичной импульсной функции при нулевых начальных условиях.

 

Переходная функция:

В частном виде:

(3)

Весовая функция:

В частном виде:

(4)

По выражениям (3), (4) строим графики переходной и весовой функций.

 

Рис.1 а) Переходная б) весовая функция

функция

 

Амплитудно – частотной характеристикой (АЧХ) A(w) называется зависимость отношения амплитуды выходного сигнала к амплитуде входного сигнала от частоты w.

 

Фазо-частотной характеристикой (ФЧХ) называется зависимость сдвига по фазе выходного сигнала относительно входного от частоты w.

 

Амплитудно-фазовая характеристика АФХ отражает как свойство изменять амплитуду выходного сигнала, так и свойство задерживать сигнал на каждой частоте на определенную величину j.

 

Выражение для построения АФХ получают из передаточной функции W(p) заменой комплексной переменной р на jw.

Так как W(jw) комплексная функция, то её можно представить в алгебраической и показательной форме записи.

Алгебраическая форма записи:

Здесь U(w)-вещественная частотная характеристика (ВЧХ);

V(w)-мнимая частотная характеристика (МЧХ).

 

Найдем частотные характеристики соединения:

 

 

Комплексная частотная характеристика:

 

(5)

 

Найдем вещественную (ВЧХ) и мнимую (МЧХ) частотные характеристики, умножив числитель и знаменатель выражения (5) на комплексно-сопряженное знаменателя:

 

Отсюда

(6)

По выражению (6) строим амплитудно-фазовую характеристику (рис.2.в)

Найдем выражения для амплитудно-частотной (АЧХ) и фазо-частотной характеристик (ФЧХ) соединения как модуль и аргумент комплексной частотной передаточной функции соответственно.

Амплитудно-частотная характеристика имеет вид:

(7)

Фазо-частотная характеристика имеет вид:

(8)

По выражениям (7),(8) строим АЧХ и ФЧХ (рис.2 а,б):

Рис.2 а) АЧХ б)ФЧХ в) АФХ

 

Из выражения (2) получим дифференциальное уравнение замкнутой системы:

 




<== предыдущая лекция | следующая лекция ==>
Дать определения для всех частотных характеристик. | 

Дата добавления: 2015-08-12; просмотров: 991. Нарушение авторских прав; Мы поможем в написании вашей работы!




Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...


Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...


Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...


Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Основные симптомы при заболеваниях органов кровообращения При болезнях органов кровообращения больные могут предъявлять различные жалобы: боли в области сердца и за грудиной, одышка, сердцебиение, перебои в сердце, удушье, отеки, цианоз головная боль, увеличение печени, слабость...

Вопрос 1. Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации Коллективные средства защиты: вентиляция, освещение, защита от шума и вибрации К коллективным средствам защиты относятся: вентиляция, отопление, освещение, защита от шума и вибрации...

Задержки и неисправности пистолета Макарова 1.Что может произойти при стрельбе из пистолета, если загрязнятся пазы на рамке...

Схема рефлекторной дуги условного слюноотделительного рефлекса При неоднократном сочетании действия предупреждающего сигнала и безусловного пищевого раздражителя формируются...

Уравнение волны. Уравнение плоской гармонической волны. Волновое уравнение. Уравнение сферической волны Уравнением упругой волны называют функцию , которая определяет смещение любой частицы среды с координатами относительно своего положения равновесия в произвольный момент времени t...

Медицинская документация родильного дома Учетные формы родильного дома № 111/у Индивидуальная карта беременной и родильницы № 113/у Обменная карта родильного дома...

Studopedia.info - Студопедия - 2014-2025 год . (0.013 сек.) русская версия | украинская версия