Студопедия Главная Случайная страница Задать вопрос

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Деформации твердого тела




Рассматривая механику твердого тела, мы пользовались понятием абсолютно твердо­го тела. Однако в природе абсолютно твердых тел нет, так как все реальные тела под действием сил изменяют свою форму и размеры, т. е. деформируются.

Деформацияназывается упругой,если после прекращения действия внешних сил тело принимает первоначальные размеры и форму. Деформации,которые сохраня-

 

 

ются в теле после прекращения действия внешних сил, называются пластическими(или остаточными).Деформации реально­го тела всегда пластические, так как они после прекращения действия внешних сил никогда полностью не исчезают. Однако если остаточные деформации малы, то ими можно пренебречь и рассматривать уп­ругие деформации, что мы и будем де­лать.

В теории упругости доказывается, что все виды деформаций (растяжение или сжатие, сдвиг, изгиб, кручение) могут быть сведены к одновременно происходя­щим деформациям растяжения или сжа­тия и сдвига.

Рассмотрим однородный стержень длиной l и площадью поперечного сечения S (рис. 34), к концам которого приложены направленные вдоль его оси силы f1 и F2 (F1=F2=F), в результате чего длина стер­жня меняется на величину Dl. Естествен­но, что при растяжении Dl положительно, а при сжатии — отрицательно.

Сила, действующая на единицу пло­щади поперечного сечения, называется на­пряжением:

s=F/S. (21.1)

Если сила направлена по нормали к по­верхности, напряжениеназывается нор­мальным,если же по касательной к по­верхности — тангенциальным.

Количественной мерой, характеризую­щей степень деформации, испытываемой телом, является его относительная дефор­мация.Так, относительное изменение дли­ны стержня (продольная деформация)

e=Dl/l, (21.2) относительное поперечное растяжение

(сжатие)

e' = Dd/d, где d -— диаметр стержня.

Деформации e и e' всегда имеют раз­ные знаки (при растяжении Dl положи­тельно, a Ad отрицательно, при сжатии Dl отрицательно, a Ad положительно). Из опыта вытекает взаимосвязь e и e':

e'=-me,

где m — положительный коэффициент, за­висящий от свойств материала, называе­мый коэффициентом Пуассона.

Английский физик Р. Гук (1635— 1703) экспериментально установил, что для малых деформаций относительное уд­линение e и напряжение s прямо про­порциональны друг другу:

s = Ee, (21.3)

где коэффициент пропорциональности Е называется модулем Юнга. Из вы­ражения (21.3) видно, что модуль Юнгаопределяется напряжением, вызывающим относительное удлинение, равное единице. Из формул (21.2), (21.3) и (21.1) вы­текает, что

где k — коэффициент упругости.Выраже­ние (21.4) также задает закон Гука, со­гласно которому удлинение стержня при упругой деформации пропорционально действующей на стержень силе.

Деформации твердых тел подчиняются закону Гука до известного предела. Связь между деформацией и напряжением пред­ставляется в виде диаграммы напряже­ний, которую мы качественно рассмотрим для металлического образца (рис. 35). Из рисунка видно, что линейная зависимость s (e), установленная Гуком, выполняется

 

 

лишь в очень узких пределах до так на­зываемого предела пропорциональности(sп). При дальнейшем увеличении напря­жения деформация еще упругая (хотя за­висимость s (e) уже не линейна) и до пре­дела упругости(sу) остаточные деформа­ции не возникают. За пределом упругости в теле возникают остаточные деформации и график, описывающий возвращение тела в первоначальное состояние после прекра­щения действия силы, изобразится не кри­вой ВО, а параллельной ей — CF. Напря­жение, при котором появляется заметная остаточная деформация (~=0,2 %), назы­вается пределом текучести(sт) — точка С на кривой. В области CD деформация возрастает без увеличения напряжения, т. е. тело как бы «течет». Эта область называется областью текучести(или об­ластью пластических деформаций).Мате­риалы, для которых область текучести значительна, называются вязкими,для ко­торых же она практически отсутствует — хрупкими.При дальнейшем растяжении (за точку D) происходит разрушение тела. Максимальное напряжение, возникающее в теле до разрушения, называется преде­лом прочности(sp).

Диаграмма напряжений для реальных твердых тел зависит от различных факто­ров. Одно и то же твердое тело может при кратковременном действии сил проявлять себя как хрупкое, а при длительных, но слабых силах является текучим.

Вычислим потенциальную энергию упругорастянутого (сжатого) стержня, кото­рая равна работе, совершаемой внешними силами при деформации:

где х — абсолютное удлинение стержня, изменяющееся в процессе деформации от 0 до Dl. Согласно закону Гука (21.4), F=kx=ESx/l. Поэтому

т. е. потенциальная энергия упругорастянутого стержня пропорциональна квадра­ту деформации (Dl)2.

Деформацию сдвига проще всего осу­ществить, если взять брусок, имеющий форму прямоугольного параллелепипеда, и приложить к нему силу Ftau (рис.36), касательную к его поверхности (нижняя часть бруска закреплена неподвижно). Относительная деформация сдвига опре­деляется из формулы

tgg = Ds/h,

где Ds — абсолютный сдвиг параллельных слоев тела относительно друг друга; h — расстояние между слоями (для малых уг­лов tgg»g).

 

 

Контрольные вопросы

• Что такое момент инерции тела?

• Какова роль момента инерции во вращательном движении?

• Какова формула для кинетической энергии тела, вращающегося вокруг неподвижной оси, и как

ее вывести?

• Что называется моментом силы относительно неподвижной точки? относительно неподвижной

оси? Как определяется направление момента силы?

• Выведите и сформулируйте уравнение динамики вращательного движения твердого тела.

• Что такое момент импульса материальной точки? твердого тела? Как определяется направле­ние момента импульса?

• В чем заключается физическая сущность закона сохранения момента импульса? В каких систе­мах он выполняется? Приведите примеры.

• Каким свойством симметрии пространства обусловливается справедливость закона сохранения момента импульса?

• Сопоставьте основные уравнения динамики поступательного и вращательного движений, прокомментировав их аналогию.

• Что такое свободные оси (главные оси инерции)? Какие из них являются устойчивыми?

• Что такое гироскоп? Каковы его основные свойства?

• Сформулируйте закон Гука. Когда он справедлив?

• Дайте объяснение качественной диаграммы напряжений s(e). Что такое пределы пропорцио­нальности, упругости и прочности?

• Каков физический смысл модуля Юнга?

Задачи

4.1.С одного уровня наклонной плоскости одновременно начинают скатываться без скольжения сплошные цилиндр и шар одинаковых масс и одинаковых радиусов. Определить: 1) отноше­ние скоростей цилиндра и шара на данном уровне; 2} их отношение в данный момент време­ни. [1) 14/15; 2) 14/15]

4.2. К ободу однородного сплошного диска радиусом R = 0,5 м приложена постоянная касатель­ная сила F=100 H. При вращении диска на него действует момент сил трения М = 2Н•м. Определить массу т диска, если известно, что его угловое ускорение к постоянно и равно 12 рад/с2. [32 кг]

4.3. Через неподвижный блок в виде однородного сплошного цилиндра массой m= 1 кг перекину­та невесомая нить, к концам которой прикреплены тела массами m1=1 кг и m2=2кг. Прене­брегая трением в оси блока, определить: 1) ускорение грузов; 2) отношения T2/T1сил на­тяжения нити. [ 1) 2,8 м/с2; 2) 1,11 ]

4.4. Скорость вращения колеса, момент инерции которого 2 кг•м2, вращающегося при торможении равнозамедленно, за время t=1 мин уменьшилась от n1=300 об/мин до n2=180 об/мин. Определить: 1) угловое ускорение e колеса; 2) момент М силы торможения; 3) работу силы торможения. [1) 0,21 рад/с2; 2) 0,42 Н•м; 3) 630 Дж ]

4.5. Человек массой m = 80 кг, стоящий на краю горизонтальной платформы массой М = 100 кг, вращающейся по инерции вокруг неподвижной вертикальной оси с частотой n1 = 10 мин-1, переходит к ее центру. Считая платформу круглым однородным диском, а человека — точеч­ной массой, определить, с какой частотой n2 будет тогда вращаться платформа. [26 мин-1 ]

4.6. Определить относительное удлинение алюминиевого стержня, если при его растяжении затрачена работа 621 Дж. Длина стержня 2 м, площадь поперечного сечения 1 мм2, модуль Юнга для алюминия E = 69 ГПа. { Dl/l=Ö[2A/(ESl)]=0,03}

 

 







Дата добавления: 2015-09-07; просмотров: 267. Нарушение авторских прав

Studopedia.info - Студопедия - 2014-2017 год . (0.006 сек.) русская версия | украинская версия