Студопедия — ПОЧЕМУ МЫ ЗАГОВОРИЛИ О ФРАКТАЛАХ?
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПОЧЕМУ МЫ ЗАГОВОРИЛИ О ФРАКТАЛАХ?






ТЕОРИЯ ФРАКТАЛОВ И ЕЕ ПРИМЕНЕНИЕ

Все образы схожи, и все же ни один на другой не похож; Хоры их на тайный закон указуют, на святую загадку. И. В. Гете. Метаморфоз растений.

ПОЧЕМУ МЫ ЗАГОВОРИЛИ О ФРАКТАЛАХ?

Во второй половине нашего века в естествознании произошли фундаментальные изменения, породившие так называемую теорию самоорганизации, или синергетику. Она родилась внезапно, как бы на скрещении нескольких линий научного исследования. Один из решающих начальных импульсов был предан ей российскими учеными на рубеже пятидесятых - шестидесятых годов. В пятидесятых годах ученый химик-аналитик Б. П. Белоусов открыл окислительно-восстановительную химическую реакцию. Открытие и изучение автоколебаний и автоволн в ходе реакции Белоусова

С. Э. Шнолем, А. М. Жаботинским, В.И. Кринским, А. Н. Заикиным, Г. Р. Иваницким- едва ли не самая блестящая страница фундаментальной российской науки в послевоенный период. Быстрое и успешное изучение реакции Белоусова - Жаботинского сработало в науке как спусковой крючок: сразу вспомнили, что и раньше были известны процессы подобного рода и что многие природные явления, начиная от образования галактик до смерчей, циклонов и игры света на отражающих поверхностях(так называемых каустиках), - по сути дела процессы самоорганизации. Они могут иметь самую различную природу: химическую, механическую, оптическую, электрическую и тому подобное. Более того, оказалось, что уже давно была готова и прекрасно разработана математическая теория самоорганизации. Ее основу заложили работы А. Пуанкаре и А. А. Ляпунова еще в конце прошлого века. Диссертация "Об устойчивости движения" написана Ляпуновым в 1892 году.

Математическая теория самоорганизации заставляет нас по-новому взглянуть на окружающий нас мир. Объясним, чем она отличается от классического мировоззрения, так как нам это будет необходимо знать при изучении фрактальных объектов.

"Классическое однозначно - детерминистическое мировоззрение может символизироваться ровной гладкой поверхностью, на которой соударяются шары, получившие определенный количества движения. Будущая судьба каждого такого тела однозначно определена его "прошлым" в предыдущий момент времени (количеством движения, зарядом) и взаимодействием с другими телами. Никакой целостностью такая система не обладает." (Л. Белоусов. Посланники живой грозы. \\ Знание- сила. N 2. 1996. - с.32). Таким образом, классическая наука верила, что будущее такой системы жестко и однозначно определено ее прошлым и, при условии знания прошлого, неограниченно предсказуемо.

Современная математика показала, что в некоторых случаях это не так: например, если шары ударяются о выпуклую стенку, то ничтожно малые различия в их траекториях будут неограниченно нарастать, так что поведение системы становиться в определенный момент непредсказуемым. Тем самым позиции однозначного детерминизма оказались подорванными даже в сравнительно простых ситуациях.

Мировоззрение, основанное на теории самоорганизации, символизируется образом горной страны с долинами, по которым текут реки, и хребтами-водоразделами. В этой стране действуют мощные обратные связи - как отрицательные, так и положительные. Если тело скатывается вниз по склону, то между его скоростью и положением существует положительная обратная связь, если оно пытается взобраться вверх, то отрицательная. Нелинейные (достаточно сильные) обратные связи – непременное условие самоорганизации. Нелинейность в мировоззренческом смысле означает многовариантность путей эволюции, наличие выбора из альтернативных путей и определенного темпа эволюции, а также необратимость эволюционных процессов. Например, рассмотрим взаимодействие двух тел: А и В. В – упругий древесный ствол, А – горный поток в нашей стране. Поток сгибает ствол по направлению движения воды, но по достижении некоторого изгиба ствол под действием упругой силы может распрямиться, отталкивая частицы воды обратно. То есть мы видим альтернативу взаимодействия двух тел А и В. Причем, это взаимодействие происходит таким образом, что связь А-В - положительна, а В-А - отрицательна. Соблюдается условие нелинейности.

Более того, в теории самоорганизации мы можем заставить нашу горную страну "жить", то есть изменяться во времени. При этом важно выделить переменные различного порядка. Такая иерархия переменных по времени является необходимым условием упорядочения самоорганизации. Нарушьте ее, "смешайте" времена- наступит хаос(пример- землетрясение, когда сдвиги геологического порядка происходят за считанные минуты, а должны- за несколько тысячелетий).Впрочем, как выявляется, живые системы не так уж и боятся хаоса: они все время живут на его пределе, иногда даже впадая в него, но все же умеют, когда надо, из него выбираться. При этом самыми важными оказываются наиболее медленные по времени переменные (их называют параметрами). Именно значения параметров определяют, каким набором устойчивых решений будет обладать система и, таким образом, какие структуры могут быть в ней вообще реализованы. В то же время более быстрые

(динамические) переменные отвечают за конкретный выбор реализуемых устойчивых состояний из числа возможных.

Принципы нелинейности и альтернативы выбора развития любого процесса, развития системы реализуется и при построении фракталов.

Как стало ясно в последние десятилетия (в связи с развитием теории самоорганизации), самоподобие встречается в самых разных предметах и явлениях. Например, самоподобие можно наблюдать в ветках деревьев и кустарников, при делении оплодотворенной зиготы, снежинках, кристаллах льда, при развитии экономических систем (волны Кондратьева), строении горных систем, в строении облаков. Все перечисленные объекты и другие, подобные им по своей структуре, называются фрактальными. То есть они обладают свойствами самоподобия, или масштабной инвариантности. А это значит, что некоторые фрагменты их структуры строго повторяются через определенные пространственные промежутки. Очевидно, что эти объекты могут иметь любую природу, причем их вид и форма остаются неизменными независимо от масштаба.

Таким образом, можно сказать, что фракталы как модели применяются в том случае, когда реальный объект нельзя представить в виде классических моделей. А это значит, что мы имеем дело с нелинейными связями и недетерминированной природой данных. Нелинейность в мировоззренческом смысле означает многовариантность путей развития, наличие выбора из альтернатив путей и определенного темпа эволюции, а также необратимость эволюционных процессов. Нелинейность в математическом смысле означает, определенный вид математических уравнений (нелинейные дифференциальные уравнения), содержащих искомые величины в степенях, больше единицы или коэффициенты, зависящие от свойств среды. То есть, когда мы применяем классические модели (например, трендовые, регрессионные и т. д.), мы говорим, что будущее объекта однозначно детерминированное. И мы можем предсказать его, зная прошлое объекта(исходные данные для моделирования). А фракталы применяются в том случае, когда объект имеет несколько вариантов развития и состояние системы определяется положением, в котором она находится на данный момент. То есть мы пытаемся смоделировать хаотичное развитие.

Что же нам дает применение фракталов?

Они позволяют намного упростить сложные процессы и объекты, что очень важно для моделирования. Позволяют описать нестабильные системы и процессы и, самое главное, предсказать будущее таких объектов.







Дата добавления: 2015-10-02; просмотров: 412. Нарушение авторских прав; Мы поможем в написании вашей работы!



Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Огоньки» в основной период В основной период смены могут проводиться три вида «огоньков»: «огонек-анализ», тематический «огонек» и «конфликтный» огонек...

Упражнение Джеффа. Это список вопросов или утверждений, отвечая на которые участник может раскрыть свой внутренний мир перед другими участниками и узнать о других участниках больше...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Законы Генри, Дальтона, Сеченова. Применение этих законов при лечении кессонной болезни, лечении в барокамере и исследовании электролитного состава крови Закон Генри: Количество газа, растворенного при данной температуре в определенном объеме жидкости, при равновесии прямо пропорциональны давлению газа...

Ганглиоблокаторы. Классификация. Механизм действия. Фармакодинамика. Применение.Побочные эфффекты Никотинчувствительные холинорецепторы (н-холинорецепторы) в основном локализованы на постсинаптических мембранах в синапсах скелетной мускулатуры...

Studopedia.info - Студопедия - 2014-2024 год . (0.014 сек.) русская версия | украинская версия