Студопедия — Уравнение Бернулли
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Уравнение Бернулли






В некоторых задачах о движении жидкости в приближении рассматривается идеальная (невязкая) жидкость.

Уравнение Бернулли для потока идеальной жидкости представляет закон сохранения энергии жидкости вдоль потока: вдоль элементарной струйки идеальной жидкости сумма потенциальной и кинетической энергии является постоянной величиной, т.е.

, (5.1)

где Н - полный гидродинамический напор (полная удельная энергия жидкости в сечении); Z – вертикальная координата центров тяжести сечений (геометрический напор); – пьезометрический напор (удельная энергия давления); /2g – скоростной напор (удельная кинетическая энергия), сумма представляет собой потенциальную энергию.

В реальных жидкостях проявляется влияние сил внутреннего трения, обусловленных вязкостью, на преодоление которых расходуется определенное количество кинетической энергии или скоростного напора h.

Уравнение Бернулли для двух сечений потока реальной жидкости записывается в следующем виде

(5.2)

где υ - средняя по сечению скорость; α – коэффициент Кориолиса, учитывающий неравномерность распределения скоростей по сечениям (при турбулентном режиме движения жидкости α =1, при ламинарном - α =2).

Член выражает потери напора на преодоление различных сопротивлений на пути движения жидкости между рассматриваемыми сечениями потока:

1) Сопротивления по всей длине потока жидкости, вызванное силами трения частичек жидкости между соседними слоями жидкости и трением о стенки, ограничивающие поток.

Потери напора называют линейными - .

2) Сопротивления, обусловленные местными препятствиями, встречающимися на пути движения (изменение формы и размеров русла). Они ведут к изменению величины и направления скорости.

Потери напора называют местными - .

Таким образом, гидродинамический напор в первом сечении всегда больше гидродинамического напора во втором сечении на величину потерь .

 







Дата добавления: 2014-12-06; просмотров: 1755. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Сравнительно-исторический метод в языкознании сравнительно-исторический метод в языкознании является одним из основных и представляет собой совокупность приёмов...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Studopedia.info - Студопедия - 2014-2024 год . (0.012 сек.) русская версия | украинская версия