Студопедия — Понятие времени в классической термодинамике
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Понятие времени в классической термодинамике






 

До возникновения термодинамики понятие времени по существу отсутствовало в классической физике в том виде, в каком оно рассматривается в реальной жизни и в науках, изучающих процессы, протекающие во времени и имеющих свою историю. Хотя в качестве переменной время входит во все уравнения классической и квантовой механики, тем не менее оно не отражает внутренние изменения, которые происходят в системе. Именно поэтому в уравнениях физики его знак можно менять на обратный, т.е. относить его как будущему, так и к прошлому.

Положение существенно изменилось после того, как физика вплотную занялась изучением тепловых процессов, законы которых были сформулированы в классической термодинамике. Если прежняя динамика описывала законы движения тел под воздействием внешних сил, сознательно отвлекаясь от внутренних изменений, происходящих в механических системах, то термодинамика вынуждена была исследовать физические процессы при различных преобразованиях тепловой энергии. Однако она не анализирует внутреннее строение термодинамических систем, как это делает статистическая физика, рассматривающая теплоту как беспорядочное движение огромного числа молекул.

Термодинамика возникла из обобщения многочисленных фактов, описывающих явления передачи, распространения и превращения тепла. Самым очевидным является тот факт, что распространение тепла представляет собой необратимый процесс. Хорошо известно, например, что тепло, возникшее в результате трения или выполнения другой механической работы, нельзя снова превратить в энергию и потом использовать для производства работы. Не менее известно, что тепло передается от горячего тела к холодному, а не наоборот.

С другой стороны, путем точных экспериментов было доказано, что тепловая энергия превращается в механическую энергию в строго определенных количествах. Существование такого механического эквивалента для теплоты свидетельствовало о ее сохранении. Все эти многочисленные факты и нашли свое обобщение и теоретическое объяснение в законах классической термодинамики:

 

Если к системе подводится тепло Q и над ней производится работа W, то энергия системы возрастает до величины U: U= Q + W.

 

Эту энергию называют внутренней энергией системы, и она показывает, что тепло, полученное системой, не исчезает, а затрачивается на увеличение внутренней энергии и производство работы, т. е. Q = U-W.

Процесс, единственным результатом которого было бы изъятие тепла из резервуара, невозможен.

 

Приведенные формулировки отражают связи, которые существуют между тепловой энергией и полученной за ее счет работой. В первом законе речь идет о сохранении энергии, во втором - о невозможности производства работы исключительно за счет изъятия тепла из одного резервуара при постоянной температуре. Например, нельзя произвести работу за счет охлаждения озера, моря или иного резервуара при установившейся температуре. Таким образом, второй закон, или начало термодинамики, можно сформулировать проще, как впервые это сделал французский ученый Сади Карно (1796-1832).

 

Невозможно осуществить процесс, единственным результатом которого было бы превращение тепла в работу при постоянной температуре.

 

Иногда этот закон выражают в еще более простой форме:

 

Тепло не может перетечь самопроизвольно от холодного тела к горячему.

 

В дальнейшем немецкий физик Рудольф Клаузиус (1822-1888) использовал для формулировки второго закона термодинамики понятие энтропии, которое впоследствии австрийский физик Людвиг Больцман (1844- 1906) интерпретировал в терминах изменения порядка в системе. Когда энтропия системы возрастает, то соответственно усиливается беспорядок в системе. В таком случае второй закон термодинамики постулирует:

 

Энтропия замкнутой системы, т.е. системы, которая не обменивается с окружением на энергией ни веществом, постоянно возрастает.

 

А это означает, что такие системы эволюционируют в сторону увеличения в них беспорядка, хаоса и дезорганизации, пока не достигнут точки термодинамического равновесия, в которой всякое производство работы становится невозможным.

Поскольку об изменении систем в классической термодинамике мы можем судить по увеличению их энтропии, то последняя и выступает в качестве своеобразной стрелы времени. В механических процессах ни о каком реальном времени говорить не приходится. Задав в них начальное состояние (координаты и импульсы), можно, согласно уравнениям движения, однозначно определить любое другое ее состояние в будущем или прошлом. Поэтому время в них выступает просто как параметр, знак которого можно менять на обратный, и таким образом вернуться к первоначальному состоянию системы. Ничего подобного не встречается в термодинамических процессах, которые являются необратимыми по своей природе.

Термодинамика впервые ввела в физику понятие времени в весьма своеобразной форме, а именно необратимого процесса возрастания энтропии в системе. Чем выше энтропия системы, тем больший временной промежуток прошла система в своей эволюции.

Очевидно, что такое понятие о времени и особенно об эволюции системы коренным образом отличается от понятия эволюции, которое лежало в основе теории Дарвина. В то время как в дарвиновской теории происхождения новых видов растений и животных путем естественного отбора эволюция направлена на выживание более совершенных организмов и усложнение их организации, в термодинамике эволюция связывалась с дезорганизацией систем. Это противоречие оставалось неразрешенным вплоть до 60-х гг. нашего века, пока не появилась новая, неравновесная термодинамика, которая опирается на концепцию необратимых процессов.

Классическая термодинамика оказалась неспособной решить и космологические проблемы характера процессов, происходящих во Вселенной. Первую попытку распространить законы термодинамики на Вселенную предпринял один из основателей этой теории - Р. Клаузиус, выдвинувший два постулата:

• энергия Вселенной всегда постоянна;

• энтропия Вселенной всегда возрастает. Если принять второй постулат, то необходимо признать, что все процессы во Вселенной направлены в сторону достижения состояния термодинамического равновесия, соответствующего максимуму энтропии, а следовательно, состояния, характеризуемого наибольшей степенью хаоса, беспорядка и дезорганизации. В таком случае во Вселенной наступит тепловая смерть и никакой полезной работы в ней произвести будет нельзя. Такие мрачные прогнозы встретили критику со стороны ряда выдающихся ученых и философов, но в середине прошлого века было еще мало научных аргументов для опровержения мнения Р. Клаузиуса и обоснования альтернативного взгляда. Некоторые авторы предполагали, что наряду с энтропийными процессами в природе происходят антиэнтропийные процессы, которые препятствуют наступлению " тепловой смерти" во Вселенной. Другие высказывали сомнение в правомерности распространения понятий термодинамики, в частности энтропии, с отдельных систем на Вселенную в целом. Но только единицы догадывались, что само понятие закрытой, или изолированной, системы является далеко идущей абстракцией, не отражающей реальный характер систем, которые встречаются в природе.

 







Дата добавления: 2014-12-06; просмотров: 644. Нарушение авторских прав; Мы поможем в написании вашей работы!



Кардиналистский и ординалистский подходы Кардиналистский (количественный подход) к анализу полезности основан на представлении о возможности измерения различных благ в условных единицах полезности...

Обзор компонентов Multisim Компоненты – это основа любой схемы, это все элементы, из которых она состоит. Multisim оперирует с двумя категориями...

Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...

Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

Функциональные обязанности медсестры отделения реанимации · Медсестра отделения реанимации обязана осуществлять лечебно-профилактический и гигиенический уход за пациентами...

Определение трудоемкости работ и затрат машинного времени На основании ведомости объемов работ по объекту и норм времени ГЭСН составляется ведомость подсчёта трудоёмкости, затрат машинного времени, потребности в конструкциях, изделиях и материалах (табл...

Гидравлический расчёт трубопроводов Пример 3.4. Вентиляционная труба d=0,1м (100 мм) имеет длину l=100 м. Определить давление, которое должен развивать вентилятор, если расход воздуха, подаваемый по трубе, . Давление на выходе . Местных сопротивлений по пути не имеется. Температура...

Стресс-лимитирующие факторы Поскольку в каждом реализующем факторе общего адаптацион­ного синдрома при бесконтрольном его развитии заложена потенци­альная опасность появления патогенных преобразований...

ТЕОРИЯ ЗАЩИТНЫХ МЕХАНИЗМОВ ЛИЧНОСТИ В современной психологической литературе встречаются различные термины, касающиеся феноменов защиты...

Этические проблемы проведения экспериментов на человеке и животных В настоящее время четко определены новые подходы и требования к биомедицинским исследованиям...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия