Студопедия — ПОСЛЕДОВАТЕЛЬНЫЕ ИСПЫТАНИЯ. ФОРМУЛА БЕРНУЛЛИ
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

ПОСЛЕДОВАТЕЛЬНЫЕ ИСПЫТАНИЯ. ФОРМУЛА БЕРНУЛЛИ






Предположим, что производится n независимых испытаний, в результате каждого из которых может наступить или не наступить некоторое событие A. Пусть при каждом испытании вероятность наступления события А равна P(A)=p и, следовательно, вероятность противоположного события (ненаступления А) равна . Определим вероятность Pn(m) того, что событие А произойдет m раз при n испытаниях. При этом заметим, что наступления или ненаступления события А могут чередоваться различным образом. Условимся записывать возможные результаты испытаний в виде комбинаций букв А и . Например, запись означает, что в четырех испытаниях событие осуществилось в 1-м и 4-м случаях и не осуществилось во 2-м и 3-м случаях.

Всякую комбинацию, в которую А входит m раз и входит n-m раз, назовем благоприятной. Количество благоприятных комбинаций равно количеству k способов, которыми можно выбрать m чисел из данных n; таким образом, оно равно числу сочетаний из n элементов по m, т.е.


Подсчитаем вероятности благоприятных комбинаций. Рассмотрим сначала случай, когда событие A происходит в первых m испытаниях и, следовательно, не происходит в остальных n-m испытаниях. Такая благоприятная комбинация имеет следующий вид:


Вероятность этой комбинации в силу независимости испытаний (на основании теоремы умножения вероятностей) составляет

 

Так как в любой другой благоприятной комбинации Вi событие A встречается также m раз, а событие происходит n-m раз, то вероятность каждой из таких комбинаций также равна . Итак


Все благоприятные комбинации являются, очевидно, несовместными. Поэтому (на основании аксиомы сложения вероятностей)


Следовательно,

(13)

 

или, так как , то

 

(13')

 

Формула (13) называется формулой Бернулли *.

 

 

Пример 1. Вероятность попадания в цель при одном выстреле равна 0, 6. Какова вероятность того, что 8 выстрелов дадут 5 попаданий?

Решение: Здесь
n=8;
m=5;
p=0, 6;
q=1-0, 6=0, 4.

Используя формулу (13'), имеем

 

 

Часто необходимо знать, при каком значении m вероятность принимает наибольшее значение, т. е. требуется найти наивероятнейшее число наступления события A в данной серии опытов. Можно доказать, что число должно удовлетворять двойному неравенству

(14)


Заметим, что сегмент [np-q; np+p], в котором лежит , имеет длину (np+p)-(np-q)=p+q=1. Поэтому, если какой-либо из его концов не является целым числом, то между этими концами лежит единственное целое число, и определено однозначно. В том случае, если оба конца — целые числа, имеются два наивероятнейших значения: np-q и np+p.

 

 

Пример 2. Определить наивероятнейшее число попаданий в цель в примере 1.

Решение: Здесь
n=8;
p=0, 6;
q=0, 4;
np-q=8*0, 6-0, 4=4, 4;
np+p=8*0, 6+0, 6=5, 4.

Согласно формуле (14) наивероятнейшее значение лежит на сегменте [4.4; 5.4] и, следовательно равно 5.

 

При больших значениях n подсчет вероятностей Pn(m) по формуле (13) связан с громоздкими вычислениями. В этом случае удобнее пользоваться следующей формулой:

(15)

 

, где (p не равно нулю и единице), a

 

Формула (15) выражает так называемую локальную теорему Лапласа **. Точность этой формулы повышается с возрастанием n.

Функция , как мы увидим в дальнейшем, играет очень большую роль в теории вероятностей. Ее значения при различных значениях аргумента приведены в Приложении (см. табл. I).

 

Пример 3. Игральную кость бросают 80 раз. Определить вероятность того, что цифра 3 появится 20 раз.

Решение: Здесь
m=20;
n=80;
p=1/6;
q=1-1/6=5/6;

далее находим


Используя формулу (15), получим


так как из табл. I находим, что

 

 

* Я. Бернулли (1654-1705) - швейцарский математик.
** П. Лаплас (1749—1827) — французский математик и астроном.

 

 







Дата добавления: 2014-12-06; просмотров: 766. Нарушение авторских прав; Мы поможем в написании вашей работы!



Картограммы и картодиаграммы Картограммы и картодиаграммы применяются для изображения географической характеристики изучаемых явлений...

Практические расчеты на срез и смятие При изучении темы обратите внимание на основные расчетные предпосылки и условности расчета...

Функция спроса населения на данный товар Функция спроса населения на данный товар: Qd=7-Р. Функция предложения: Qs= -5+2Р,где...

Аальтернативная стоимость. Кривая производственных возможностей В экономике Буридании есть 100 ед. труда с производительностью 4 м ткани или 2 кг мяса...

Тема: Изучение приспособленности организмов к среде обитания Цель:выяснить механизм образования приспособлений к среде обитания и их относительный характер, сделать вывод о том, что приспособленность – результат действия естественного отбора...

Тема: Изучение фенотипов местных сортов растений Цель: расширить знания о задачах современной селекции. Оборудование:пакетики семян различных сортов томатов...

Тема: Составление цепи питания Цель: расширить знания о биотических факторах среды. Оборудование:гербарные растения...

Понятие о синдроме нарушения бронхиальной проходимости и его клинические проявления Синдром нарушения бронхиальной проходимости (бронхообструктивный синдром) – это патологическое состояние...

Опухоли яичников в детском и подростковом возрасте Опухоли яичников занимают первое место в структуре опухолей половой системы у девочек и встречаются в возрасте 10 – 16 лет и в период полового созревания...

Способы тактических действий при проведении специальных операций Специальные операции проводятся с применением следующих основных тактических способов действий: охрана...

Studopedia.info - Студопедия - 2014-2024 год . (0.021 сек.) русская версия | украинская версия