Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Алгоритм. Вычислить очередной член U = –U X2/((n + 1) (n+2));





1. Ввести X и Е.

2. Положить n =1, U = X, F =0.

3. Пока |U|> E

Вычислить F=F+U;

Вычислить очередной член U = –U X 2/((n + 1) (n +2));

Получить его номер n=n +2.

4. Вывести X и F.

5. Закончить.

 

Программа для рассмотренного алгоритма будет иметь следующий вид

Program NovSin;

Var

F, X, E, U: Real;

n: Integer;

Begin

Writeln('Введите аргумент Х и погрешность Е');

Readln(X, E);

n: = 1;

U: =X;

F: =0;

While Abs(U)> E Do

Begin

F: =F+U;

U: =-U*Sqr(X)/(2*N*(2*N+1));

N: =N+1;

End;

Writeln(X: 8: 6, ' SinX=', F: 10: 6,

' Машинный SinX=', Sin(X): 10: 6);

End.

Количество повторений цикла заранее неизвестно. Оно зависит от требуемой точности и от значения аргумента. Если X=0, то цикл не выполняется ни разу. Количество повторений цикла в данном случае можно узнать по номеру N последнего вычисленного члена. В других случаях это можно сделать с помощью обычного счетчика:

k: = 0;

while abs(U)> E do

begin

k: = k+1;

F: =.......;

......

end;

writeln('k= ', k);

 

Решение уравнений приближенными методами

 

В общем виде уравнение может быть записано так:

f(x)= 0,

где f(x) – произвольная функция. При этом невозможно записать формулу для нахождения его корней, за исключением квадратного и линейного уравнения. Для таких случаев корни определяются приближенными методами. Наиболее распространенными из них являются:

- метод деления отрезка пополам;

- метод Ньютона и

- метод прохождения отрезка с переменным шагом.

Метод деления отрезка пополам

 

Это — наиболее простой метод, позволяющий найти корень для функции любого вида, если только правильно выбран интервал, на котором он существует. Метод использует известное из математики свойство, которое заключается в следующем. Если на некотором отрезке функция меняет знак, то на этом отрезке она пересекает ось Х, т.е. имеет корень.

Поиск корня осуществляется следующим образом.

1. Выбирается интервал [ a, b ] значений аргумента Х, на котором ищется корень. (На этом интервале, как отмечалось выше, функция должна менять знак).

2. Начальное значение корня X0 принимается равным левой (a) или правой (b) границе интервала.

3. Вычисляется очередное приближение по формуле

Х = (Правая_граница - Левая_граница)/2.

4. Определяются значения функции f на одной из границ отрезка (например, левой) и в точке очередного приближения Х.

5. Если эти значения имеют разные знаки, то одну из границ (правую — см. п. 4) переносят в точку Х.

Пункты 3 — 5 повторяют до тех пор, пока разность между двумя соседними значениями Х не станет меньше или равно заданной погрешности Е. Последнее приближение Х считается корнем.

Составим алгоритм и программу нахождения корня описанным методом, считая что в программе будет использована функция f(x).







Дата добавления: 2014-12-06; просмотров: 640. Нарушение авторских прав; Мы поможем в написании вашей работы!




Композиция из абстрактных геометрических фигур Данная композиция состоит из линий, штриховки, абстрактных геометрических форм...


Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...


ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...


Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Мотивационная сфера личности, ее структура. Потребности и мотивы. Потребности и мотивы, их роль в организации деятельности...

Классификация ИС по признаку структурированности задач Так как основное назначение ИС – автоматизировать информационные процессы для решения определенных задач, то одна из основных классификаций – это классификация ИС по степени структурированности задач...

Внешняя политика России 1894- 1917 гг. Внешнюю политику Николая II и первый период его царствования определяли, по меньшей мере три важных фактора...

Концептуальные модели труда учителя В отечественной литературе существует несколько подходов к пониманию профессиональной деятельности учителя, которые, дополняя друг друга, расширяют психологическое представление об эффективности профессионального труда учителя...

Конституционно-правовые нормы, их особенности и виды Характеристика отрасли права немыслима без уяснения особенностей составляющих ее норм...

Толкование Конституции Российской Федерации: виды, способы, юридическое значение Толкование права – это специальный вид юридической деятельности по раскрытию смыслового содержания правовых норм, необходимый в процессе как законотворчества, так и реализации права...

Studopedia.info - Студопедия - 2014-2026 год . (0.014 сек.) русская версия | украинская версия