Студопедия — Диаграмма состояния однокомпонентной системы
Студопедия Главная Случайная страница Обратная связь

Разделы: Автомобили Астрономия Биология География Дом и сад Другие языки Другое Информатика История Культура Литература Логика Математика Медицина Металлургия Механика Образование Охрана труда Педагогика Политика Право Психология Религия Риторика Социология Спорт Строительство Технология Туризм Физика Философия Финансы Химия Черчение Экология Экономика Электроника

Диаграмма состояния однокомпонентной системы






Рассмотрим диаграмму состояния однокомпонентной системы на примере диаграммы состояния воды.

В зависимости от значений термодинамических параметров равновесия температуры T и давления p вода может находиться в трех агрегатных состояниях: твердом, жидком, газообразном. Диаграмма состояния (фазовая диаграмма) является графическим изображением всех возможных фазовых состояний системы в пространстве основных параметров равновесия (температура, давление, состав).

Рассмотрим условия фазовых равновесий для воды.

Трехфазное равновесие Н 2 О. В равновесии находятся пар, лед и жидкость. Число степеней свободы равно нулю (С = 1 + 2 – 3 = 0). Система инвариантна, т. е. нельзя изменить ни давление, ни температуру, чтобы не изменилось число фаз. На диаграмме этому состоянию соответствует точка (точка 0 на рис. 3.3) с координатами: температура Т = 273, 16 К и давление р = 610, 48 Па.

Изменение одного из параметров приводит к переходу системы в однофазное состояние. В двухфазное состояние система может перейти при соответствующем изменении двух параметров.

Двухфазное равновесие Н 2 О. В равновесии находятся две фазы (жидкость Û газ, твердая фаза Û жидкость или твердая фаза Û газ). Число степеней свободы равно С = 1 + 2 – 2 = 1. Система является моновариантной. Число фаз в системе не изменится, если изменять или температуру или давление в известных пределах. Причем изменение одного из этих параметров приводит к строгому функциональному изменению и другого параметра. На диаграмме двухфазному равновесию соответствуют линии, выходящие из точки равновесия трех фаз.

Линия 1 соответствует значениям давления и температуры, при которых в равновесии находятся жидкость и газ. Она является функциональной зависимостью давления насыщенных паров от температуры (p нас = f(T)) или температуры кипения от давления (T кип= f(p)). При повышении температуры и давления эта линия заканчивается в критической точке К (Т к = = 647, 4 К, р к = 221, 14× 105 Па). При достижении критических параметров исчезает различие свойств жидкой и газообразной воды. При Т > Т к повышением давления нельзя добиться конденсацию газа. Отметим, что вещество, находящееся в газообразном состоянии при Т < Т к, часто называют паром, а при Т > Т к – газом.

Линия 2 соответствует значениям давления и температуры, при которых в равновесии находятся твердая фаза и жидкость.

Линия 3 соответствует равновесию твердой фазы и газа.

Однофазная система. В системе вода находится только в твердом, жидком или газообразном состоянии, число фаз Ф=1. Тогда число степеней свободы С = 1 + 2 – 1 = 2. Система является бивариантной. Можно в определенных пределах произвольно изменять оба параметра (давление и температуру), при этом число фаз не изменится. На диаграмме этому состоянию вещества соответствует часть плоскости между линиями.

 
 

Рис. 3.3. Диаграмма состояния воды (без строгого соблюдения масштаба)

 

Между линиями 1 (равновесие жидкость Û газ) и 2 (равновесие твердая фаза Û жидкость) находится поле жидкой фазы. Между линиями 1 (равновесие жидкость Û газ) и 3 (равновесие твердая фаза Û газ) – поле газообразного состояния. Между линиями 2 (равновесие твердая фаза Û жидкость) и 3 (равновесие твердая фаза Û газ) – поле твердой фазы.

Координаты точек пересечения линии изобары р 0=1, 013× 105 Па с линиями двухфазного равновесия (линии 2 и 1) являются температурами плавления (Т пл =273, 15 К) и кипения (Т кип = 373, 15 К) воды в стандартных условиях.

По диаграмме состояния (фазовой диаграмме, рТ диаграмме) можно определить:

1) условия (давление и температура), при которых вещество находится в той или иной фазе;

2) условия равновесия (давление и температура) в системе двух и более фаз.

Например, используя диаграмму состояния воды (рис. 3.3), рассмотрим переходы системы из одного состояния равновесия в другое при изменении давления и температуры.

1. Пусть в равновесии находятся три фазы (точка 0). Изменение одного из параметров приводит к переходу системы в однофазное состояние. Например, понижение температуры при постоянном давлении вызывает переход в твердое состояние (процесс П1). При одновременном соответствующем друг другу изменении температуры и давления система перейдет в состояние двухфазного равновесия (например, процесс П2 равновесие жидкостьÛ газ).

2. Пусть в равновесии находятся две фазы. Например, равновесию жидкостьÛ газ на диаграмме соответствует линии 1. В этом случае изменение одного из параметров, например увеличение температуры (процесс П3) или давления (процесс П4), приведет к переходу системы в состояние однофазного равновесия соответственно в газообразное или жидкое состояние. При одновременном изменении температуры и давления система может остаться в состоянии двухфазного равновесия, если параметры нового состояния равновесия соответствуют точке, расположенной на линии 1.

3. Пусть система состоит только из одной фазы. Такому состоянию соответствуют точки, лежащие в одном из полей. Например, вода находится в газообразном состоянии. Можно произвольно одновременно изменять оба параметра (процесс П5), и при этом система останется однофазной. Эти изменения можно производить в пределах линий двухфазного равновесия (линии 1 и 3). Если уменьшать температуру при постоянном давлении (процесс П6), то вода будет находиться в газообразном состоянии до температуры Т, соответствующей точки пересечения с линией 1. При этой температуре будет происходить конденсация воды, и при дальнейшем понижении температуры будет охлаждаться жидкая вода.

 







Дата добавления: 2014-10-22; просмотров: 1870. Нарушение авторских прав; Мы поможем в написании вашей работы!



Важнейшие способы обработки и анализа рядов динамики Не во всех случаях эмпирические данные рядов динамики позволяют определить тенденцию изменения явления во времени...

ТЕОРЕТИЧЕСКАЯ МЕХАНИКА Статика является частью теоретической механики, изучающей условия, при ко­торых тело находится под действием заданной системы сил...

Теория усилителей. Схема Основная масса современных аналоговых и аналого-цифровых электронных устройств выполняется на специализированных микросхемах...

Логические цифровые микросхемы Более сложные элементы цифровой схемотехники (триггеры, мультиплексоры, декодеры и т.д.) не имеют...

Классификация холодных блюд и закусок. Урок №2 Тема: Холодные блюда и закуски. Значение холодных блюд и закусок. Классификация холодных блюд и закусок. Кулинарная обработка продуктов...

ТЕРМОДИНАМИКА БИОЛОГИЧЕСКИХ СИСТЕМ. 1. Особенности термодинамического метода изучения биологических систем. Основные понятия термодинамики. Термодинамикой называется раздел физики...

Травматическая окклюзия и ее клинические признаки При пародонтите и парадонтозе резистентность тканей пародонта падает...

Именные части речи, их общие и отличительные признаки Именные части речи в русском языке — это имя существительное, имя прилагательное, имя числительное, местоимение...

Интуитивное мышление Мышление — это пси­хический процесс, обеспечивающий познание сущности предме­тов и явлений и самого субъекта...

Объект, субъект, предмет, цели и задачи управления персоналом Социальная система организации делится на две основные подсистемы: управляющую и управляемую...

Studopedia.info - Студопедия - 2014-2024 год . (0.01 сек.) русская версия | украинская версия